
List Signature Schemes

Sébastien Canard a Berry Schoenmakers b Martijn Stam c

Jacques Traoré a

aFrance Telecom R&D
42, rue des Coutures, BP6243
14066 Caen Cedex 4, France

bTechnische Universiteit Eindhoven
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

cDept. Computer Science, University of Bristol, Merchant Venturers Building,
Woodland Road, Bristol, BS8 1UB, United Kingdom.

Abstract

A group signature scheme allows members of a group to issue signatures on behalf
of the group, while hiding for each signature which group member actually issued
it. A group signature scheme also involves a group manager, who is able to open
any group signature by showing which group member issued it.

We introduce the concept of list signatures as a variant of group signatures which
set a limit on the number of signatures each group member may issue. These limits
must be enforced without having the group manager open signatures of honest group
members—which excludes the trivial solution in which the group manager opens
every signature to see whether some group members exceed their limits. Further-
more, we consider the problem of publicly identifying group members who exceed
their limits, also without involving the group manager.

Key words: Electronic voting schemes, Group signature schemes, List signature
schemes.

1 Introduction

The basic functionality of a group signature scheme, as introduced by Chaum
and Van Heijst (18), is to allow members of a group to issue signatures on
behalf of the group, while hiding for each signature which group member

? Discrete Applied Mathematics volume 154-2, pp. 189-201, 2006

Preprint submitted to Elsevier Science 25 January 2008

actually issued it. In addition it must be possible for a group manager to open
any signature issued on behalf of the group, by showing which member issued
it.

The group manager is therefore in a powerful position and must be trusted
not to revoke the anonymity of group members without permission. To lower
the trust in the group manager it may be implemented in a distributed fash-
ion (using threshold cryptography) such that signatures are only opened if a
majority of the proxies agrees to do so.

In this paper we study methods to extend the functionality of group signatures
while limiting the involvement of the group manager as much as possible. We
introduce the notion of public detection, which in its simplest form enables any
party to detect if a group member attempts to issue more than one signature on
behalf of the group. Obviously, this problem can be solved by having the group
manager open every signature to check whether a group member signed twice.
In that case, however, all signatures by honest group members are also opened.
Loosely speaking, we define a list signature scheme as a group signature scheme
with public detection but without opening manager. To prevent the need to
continuously rekey the scheme, we let signatures depend on a time frame and
only require detection of signatures of the same user within the same time
frame (and unlinkability otherwise).

We also introduce the notion of list signatures with public identification. This
type of scheme not only allows any party to detect dishonest group members,
but also for any party to identify them based on their signatures issued on
behalf of the group. Hence, the absence of a group manager who can identify
misbehaving participants does not actually help these culprits in trying not to
be identified. This is particularly useful in an on-line/off-line scenario, where
signatures are verified on-line but only checked for double use later.

Group signatures are sometimes associated with applications such as electronic
cash and electronic voting. In these applications, a central problem is to pre-
vent payers from spending the same coin twice and voters from casting more
than one ballot, respectively. Group signature schemes with public detection
substantiate these claims by building in a mechanism to detect multiple sig-
natures by the same group member. As explained above, we require that the
scheme can be run in an optimistic mode: signatures of honest group mem-
bers need not be opened; however, if multiple signatures by the same group
member are detected, the group manager may reveal the identity by opening
one of these signatures.

There are several constructs known in the literature that are related to group
signatures, such as identity-escrow, anonymous credentials, concurrent signa-
tures, ring signatures, traceable signatures, and direct anonymous attestation.

2

We briefly discuss the last three, since they are most relevant to our new pro-
posal of list signatures.

Ring signatures were introduced by Rivest et al. (28) as a light-weight alter-
native to group signatures. The important feature of a ring signature is the
fact that groups are made ad-hoc without the intervention of a group manager
by distilling a group public key from the public keys of the intended group
members. Ring signatures as originally proposed do not possess a manager to
open signatures. Recent work by Dodis et al. (21) show that ring signatures
can in fact be equipped with an opening mechanism, in which case they be-
come group signatures with vastly simplified group management. Obviously
for list signatures a distinction can also be made between different types of
group management.

Traceable signatures were introduced by Kiayias et al. (24). They offer the
same functionality as group signatures, but with two added possibilities called
tracing and claiming. It is relatively straightforward for a signer to claim own-
ership of a signature as long as he knows the randomness used to create his
signature (and note that, contrary to ordinary signatures, group signatures
necessarily need to be randomized since they include an encryption of the
identity). Kiayias et al. consider the situation where a signer can claim a sig-
nature originated from him without needing to know the randomness. Tracing
a signature allows the group manager to publish a value that allows the tracing
of all signatures originating from a specific signer.

Direct anonymous attestation was recently introduced by Brickell et al. (11).
It is slightly different from the schemes above, in that the user is actually
split in two parts: a trusted platform module (TPM) and a host (for instance
a mobile phone). If we ignore this separation, direct anonymous attestation
can be seen as a group signature without the feature that a signature can be
opened, but with the added functionality that signatures originating from the
same user can be made linkable.

Roadmap Our first result is presented in Section 3, where we show how to
efficiently proof equality of discrete logarithms in the 1-out-of-n setting. In
Section 4 we give a definition of what constitutes a list signature scheme and,
after introducing the basic design ideas in Section 5, we present a list signature
scheme suitable for small groups (of users) in Section 6 and one for large
groups in Section 7. We conclude with some remarks about the applicability
of list signatures to electronic voting schemes in Section 8. But we begin with
introducing some notation and a brief and informal discussion of the relevant
hardness assumptions.

3

2 Intractability Assumptions

The Strong RSA Assumption Let p′ and q′ be primes of equal length, such
that both p = 2p′ + 1 and q = 2q′ + 1 are also prime. The number n = pq is
known as a safe RSA modulus. The group (under multiplication) of quadratic
residues modulo n is denoted by QR(n). It is not to hard to see that QR(n)
is a cyclic group of order p′q′.

The flexible RSA problem is defined as finding u ∈ QR(n) and e ∈ Z>1 such
that ue = y mod n when given y and n. Solving the flexible RSA problem
is easy for those knowing the factorisation of n, however the strong RSA
assumption states that given only y and n, the flexible RSA problem is hard
to solve.

The Decision Diffie Hellman Problem Let G be a finite cyclic abelian
group with generators f and g. Now suppose someone prepares two samples:
in one f and g are raised to the same random power, in the other to two
independently random powers (which in effect results in two random elements
of G). The Decision Diffie Hellman problem is to distinguish between these
two samples, given the four group elements (that is, f, g and the two powers).

The DDH problem has a nice and well-known reducibility property. If it is
hard to distinguish tuples (f, g, fx, gx) from random tuples (f, g, fx, gy), then
it is also hard to distinguish for example tuples (f, g, h, fx, gx, hx) from random
tuples (f, g, h, fx, gy, hz).

If G = QR(n), then G has composite order and for those knowing the group
decomposition of G (i.e., knowing the factorisation of n), the DDH problem
in G reduces to the DDH problem in the respective components of G. That
is, the DDH in G is hard if and only if it is hard in all of its components,
where the components of course are regarded as computational objects and
not purely group-theoretic ones.

3 Proving Subset Relations for Sets of Discrete Logs

Suppose f, g are generators of a group Gq of prime order q for which logg f
is unknown. We present an efficient zero-knowledge proof of membership for
the language consisting of tuples (y1, . . . , yn, a1, . . . , am) ∈ Gn+m

q , 1 ≤ m ≤ n,
satisfying

{logf aj | 1 ≤ j ≤ m} ⊆ {logg yi | 1 ≤ i ≤ n} (1)

But before we do so, a quick reminder of the tools we use. Knowledge of a

4

discrete logarithm can be proven using Schnorr’s protocol (29). It takes the
prover a single exponentiation to perform, whereas simulating it would require
a double exponentiation. Chaum and Pedersen (17) proposed an extension to
proof equality (and knowledge) of discrete logarithms. A prover now needs to
perform two single exponentiations and the cost of simulating are also doubled.
Finally, Cramer, Damg̊ard and Schoenmakers (19) have given a technique to
proof one out of a many statements, but without revealing which statement (in
fact, their technique is even more general). For the statement that is known,
the costs are the same as for the prover of that statement, whereas for the
other cases the costs equal that of simulation (hence, if the prover happens to
know more than what is required of him to proof, he can speed things up a
bit).

We now return to a proof for the language we described. If m = n = 1 the
language coincides with the language for the Chaum-Pedersen proof described
above. For the general case, it is possible to directly apply the technique for
proving 1-out-of-n relations using the Chaum-Pedersen proof as the basic proof
to show that logf aj ∈ {logg yi | 1 ≤ i ≤ n}, for j = 1, . . . ,m. Indeed this is
the approach followed by (13; 20) to construct proofs for similar statements.
However, the total work for the proof becomes approximately 2mn double
exponentiations.

We obtain an improved protocol by breaking up the proof in a different way.
As a result we are able the reduce the total work by a factor of two, reducing
it to about mn double exponentiations, which seems minimal.

The protocol is based on the following lemma.

Lemma 1. Suppose logf g is unknown. If one proves knowledge of witnesses
ui, vj, wj satisfying

yi = gui , for i = 1, . . . , n (2)

aj = f vj , for j = 1, . . . ,m (3)

∃n
i=1ajyi = (fg)wj , for j = 1, . . . ,m (4)

then it follows that (1) is satisfied.

Proof. Consider an arbitrary j, and let i be such that yiaj = (fg)wj , hence
guif vj = (fg)wj . The particular witnesses can be obtained from the knowledge
extractor, but this implies that we can compute logg f as

logg f = (ui − wj)/(wj − vj),

unless vj = wj, and hence ui = vj = wj. Therefore, (1) must hold. 2

5

Therefore, in order to prove that (1) holds, it suffices to prove that (2)–(4)
holds. For (2) and (3) we need m and n Schnorr proofs, respectively. State-
ment (4) can be proven using the technique for proving 1-out-of-n relations,
requiring the work of mn Schnorr simulations.

We will apply Lemma 1 in Section 6 to obtain an efficient list signature scheme.
It can also be used to speed up Camenisch’ group signature scheme (13) or
multiway elections (20) by a factor of two.

4 List Signatures: Definition

We now move to a new type of signature scheme, which has as defining fea-
ture that they are linkable all along a time frame. More precisely, if a single
user signs twice within the same time frame, his two signatures can be ef-
ficiently linked. Signatures of the same user in different time frames should
remain unlinkable though. A stronger version allows public retrieval of the cul-
prits identity without the intervention of a group manager. Because we regard
double-spenditure as bad behaviour, we only define a minimum penalty (either
detection or identification). We do not require that the damage stops there, it
might very well be that double-spenditure in fact results in full traceability of
that user’s signatures or even the ability of anyone to sign on that user’s be-
half. Needless to say, it is possible to pinpoint the penalty of double spenditure
more precisely (note that in the real/ideal-model this is immediate (11)).

With respect to group management, we opted for a slightly less traditional
approach. First of all we assume that there is already a legally binding PKI in
place with which users can identify but also commit themselves. Secondly we
assume that any group public key also implicitly defines the qualified group
members under that key. This assumption makes it easier to define security
for dynamic groups (either ad hoc or schemes allowing revocation). Even for
schemes that claim a constant size group key, such as the one by Ateniese
et al. (2) the public key satisfies this property if the transcripts of the Join-
protocols are regarded as part of the public key. As noted by Dodis et al. (21)
it is not so much the size of the theoretical group public key that matters in
reality, but rather the information that is actually needed to sign and verify
signatures (assuming that it has already been checked that this information
is part of a valid and relevant group public key).

For our definition of list signatures we extend the existing model for group
signatures (see (18; 13)) with protocols for detection and identification added
and taking into account some recent developments regarding the definition of

6

group signatures (25; 6; 5) and the discussion above.

A list signature scheme implies various entities: a group manager M who is
responsible for the group’s public key and users i who will be list members.
The scheme contains protocols for the following tasks:

Key generation which produces the group’s public key used to verify signa-
tures, a private key for each group member, and a private key for the group
manager. Typically key generation consists of a Setup protocol to initial-
ize the system that will output the secret key of the manager(s) and some
related public information; an interactive Join protocol between a user i
and the manager after which the user becomes a member of the list, legally
bound by his own signature using an existing PKI; a Revoke protocol that
the group manager can use to revoke a member; and an Update protocol
that group users can use to update their secret key after a change in the
public key as a consequence of another user joining or leaving the qualified
list of members.

Sign to produce a signature on input of a message, a time frame, the group’s
public key, and a group member’s private key.

Verify which takes as input a message, a time frame, a signature and the
group’s public key and accepts iff the signature is correct for that message
and time frame.

Open which is used by the group manager to prove that a group member did
or did not produce a signature.

Rely to determine whether out of a list of signatures based on the same
timeframe two (or, in general, k) signatures were produced by the same
person (called detection procedure) and, for schemes with identification, by
whom.

Note that a scheme with opening but without detection or identification is the
known group signature scheme. A scheme with detection or identification but
without the capability of opening is called a list signature scheme A scheme
with both opening and detection could be called either a group signature
scheme with detection or a list signature scheme with opening. We do not
reserve a name for a scheme with neither opening nor detectability possibilities
because it is unclear to us how to define them formally.

We consider three security properties. For the second property we make a
distinction between group signatures, list signatures and the combination of
both. We only describe the properties informally and do not precise the powers
of the adversary. In a formalization, the adversary will typically be modelled
as a probabilistic polynomial time Turing machine run on input 1λ that is
allowed to introduce honest and corrupt users to the system, corrupt honest
players, have honest players revoked, ask honest players for signatures and, if
applicable, ask for signatures to be opened.

7

The only limitations we pose on the adversary are that it can only query
one signature per honest player per timeframe and it cannot ask for opening
a challenge signature (in the anonymity game). We are also cautious about
allowing corruption of the group manager, especially since the group manager
can be split according to functionality (e.g., a separate list manager and open
manager). In the concrete schemes we will be more concrete about the level
of corruption that the scheme can cope with.

Correctness An adversary cannot prevent honest group members from pro-
ducing valid signatures, nor can the adversary cause the detection of the
signatures of an honest group member.

Soundness An adversary can produce at most one valid signature per time
frame per corrupted player without being detected, or without the identity
of a corrupted group member being released. Note that signatures obtained
from querying honest signers do not count as produced by the adversary.
(If applicable, an adversary cannot produce a valid signature that does not
open to a corrupted player.)

Anonymity Given a set of signatures over different timeframes, the adversary
cannot determine whether two of them were signed by the same person.

Note that in the case of identification the second clause of correctness is super-
fluous. An adversary capable of causing identification of honest users already
breaches anonymity. We are not aware of a similar argument for schemes with
just detection.

The detectability feature of list signature schemes automatically implies that
theoretically list members can disavow or claim a signature without the need
to know the randomness that created it, based on the well known result that all
of NP can be proven in zero-knowledge. As pointed out by Camenisch 1 , this
has the side-effect that a coalition encompassing all users bar one, can prove
that a signature originated from the last remaining honest user. In ordinary
group signature schemes, this ought not to be possible.

5 Basic Ideas for Realizing List Signature Schemes

In this section we informally describe how to adapt group signature schemes
into list signature schemes. We will concentrate on detectability, since getting
rid of the opening facility of group signatures, if required, is usually relatively
straightforward. In the literature two important types of group signatures
exist, those whose efficiency is (largely) independent of the group size and
those for which this is not the case, typically resulting in linear dependency.

1 Private communication, 2000

8

Interestingly, most large group signature schemes are based on the Strong
RSA assumption coupled with (a version of) the Decisional Diffie Hellman
assumption. Small group signature schemes can also be easily implemented
based on groups in which the DDH problem is assumed hard.

This commonality of different schemes leads us to a generally applicable so-
lution for turning known group signature schemes into list signature schemes.
Let us first define some notation and terminology. We let G be a group of pos-
sibly unknown order in which the DDH problem is assumed to be hard, even
if the group decomposition of G is known. We also assume the existence of a
hash function H : {0, 1}∗ → G. Furthermore, we observe that in all schemes
we are aware of each user has a unique secret key xi that lives in the exponent
group (although not necessarily reduced modulo the group order).

The basic idea for performing detection is simple. Given the description of a
timeframe T , the user computes and publishes H(T)xi , along with a NIZK-
proof that the same secret key was used for the computation of H(T)xi and
the rest of the signature. Note that most, if not all, known constructions of
group signatures already employ a NIZK-proof involving xi during the signing
state and that adapting these proofs can always be done theoretically and
quite efficiently in practice (which will become clear from our examples).

It is intuitively clear that an otherwise honest signer who signs twice in the
same timeframe will be caught since the values of H(T)xi will collide in these
two signatures. On the other hand, it is extremly unlikely that the signatures of
two honest users cause detection. In fact, it will also be hard for an adversary
to cause detection based on an honest user’s signature and one of his own
signatures, since the proof of knowledge that is part of any valid signature
requires him to actually know a value x congruent to the secret key xi of the
honest user (modulo the group order). This secret is usually well protected
from an adversary.

Linking signatures of the same user, but within different time frames will be
difficult. Loosely speaking, the proof of knowledge will not aid an adversary in
linking signatures since it is a NIZK-proof. Furthermore, the value H(T)xi can
be regarded to be independent of the rest of the signature if H is modelled as
a random oracle. Here we use the fact that the rest of the signature is based
on a group signature scheme where time frames are not defined, so H will not
be queried on T in that part of the signature. Moreover, if the original group
signature scheme was secure, that part of the list signature will not give the
signer away. All that remains are the values H(T)xi for a fixed xi but various
T . Under the random oracle model, the elements output by H are uncorre-
lated or, more precisely, even for an adversary who can adaptively choose the
values Tj the distribution H(Tj)j=1,...,n will be indistinguishable from the uni-
form distribution over Gn, provided all the Tj are different. But then the DDH

9

assumption will guarantee that the distribution (H(Tj), H(Tj)
x)j=1,...,n where

x is randomly chosen in the exponent group is computationally indistinguish-
able from the uniform distribution over G2n, since it is well known that the
hardness of the DDH problem based on quadruples implies the hardness of
the DDH problem based on any 2n-tuple as long as n is polynomial in the
security parameter.

The idea of detection using the exponentiation of a random group element to
a fixed secret also appears in the context of for instance toggling schemes (31),
fair E-cash systems (32; 16), direct anonymous attestation (11) and traceable
signatures (24). We note that it can be advantageous to use a different group
than G to perform the detection (cf. (11)) to improve the efficiency or to ease
the implementation of identification.

Identification A list signature scheme providing detection can also be ex-
tended to provide identification of the culprit using techniques based on secret
sharing. We will assume that the group G is of large prime order q.

The easiest 2-out-of-q threshold sharing schemes for Zq that exists is one based
on lines. Let s ∈ Zq be a secret, then the dealer picks a random point r ∈ Zq

and hands out shares (X, r + sX) ∈ Z2
q, i.e., points on a line. Given one point

the slope s is still information theoretically hidden, but clearly two points or
shares define the line and allow retrieval of the line.

A list signature scheme can be equipped with the identification functionality
by requiring that, as part of his signature, the user releases a point on a line
that contains his identity. Obviously a user should not be allowed to use the
same point all over again, but this can easily by ensured by using a hash of the
message to be signed. A problem though is that signatures in different time
frames should not reveal anything, which basically requires a fresh line for
each time frame. This technicality can be overcome by exploiting the linearity
of the secret sharing scheme and conducting the secret sharing scheme in the
exponent group Zq of G, handing out shares (X, gr+sX) instead. The secret
s will remain the same, but the randomness r will depend both on the time
frame and the identity of the user (basically by performing Diffie Hellman key
agreement in some sense). Although only gs can be reconstructed this way,
identification of the user is ensured.

6 Small Groups

In this section we describe how the construction above can be used in conjunc-
tion with a group signature scheme based on the CDS-technique to perform
1-out-of-N proofs (19) and standard discrete logarithm based tools to form

10

a list signature with identification capability. The scheme is actually of the
ad-hoc type, meaning that the list of members belonging to a public key only
need to be determined at the time of signing.

Setup The group manager picks a group Gq of prime order q and publishes
(Gq, q), together with two randomly chosen generators g and h of Gq. The
group Gq implicitly defines a hash-function H : {0, 1}∗ → Gq and a hash-
function H ′ : {0, 1}∗ → Zq. The Decision Diffie-Hellman problem is assumed
to be hard in the group Gq.

Note that the group manager does not have a secret key and is not in-
volved in the remainder of the list signature scheme.

Join A user can join by picking a random x ∈ Zq and publishing y = gx,
together with a proof of knowledge of x. The user also publishes some z ∈ Zq.
A user’s z has to be unique. Henceforth we will assume that user i is legally
bound to his public key pair (yi, zi) and denote xi = logg y.

To sign anonymously on behalf of a list of users, the group public key is
computed as the concatenation of the public keys of the individual members.

Sign Let (yj, zj)j=1,...,N be the group public key and let i ∈ {1, . . . , N}. User i
wishing to sign a message m in time frame T first computes s = H(T, 1), t =
H(T, 0), and X = H ′(m, T). It then publishes values T1 = txi and T2 =
sxizi

X together with a NIZK-proof that for some j ∈ {1, . . . , n} it holds
that the user knows an x ∈ Zq such that yj = gx, T1 = tx, and T2z

−X
j = sx.

Here the technique developed in Section 3 can be employed to save some
work. The user first proves knowledge of logt T1 and than performs a 1-out-
of-n proof of the equality of the discrete logaritms loggt yjT1 and logs T2z

−X
j .

Verify Verify that the public key is correct, i.e., only consists of values re-
sulting from the Join protocol, and verify the NIZK-proof provided by the
signature.

Rely If two signatures (T1, T2) on message m and (T ′
1, T

′
2) on message m′ based

on the same timeframe T satisfy T1 = T ′
1 compute z′ = (T2/T

′
2)

1/(X−X′),
where X = H ′(m,T) and X ′ = H ′(m′, T). Identify the user with z = z′.

6.1 Security

Our claim is that the scheme just described is secure in the ROM under the
DDH assumption. Since the group manager is hardly involved in the scheme,
he may also be totally corrupted, provided the key generation performed by
him during Setup is guaranteed not to allow him to introduce a somehow weak
group Gq.

Correctness We first remark that we only have to contend ourselves with
the first clause, since we are dealing with a scheme with identification. The
first clause is trivially satisfied, since an honest user will only ever commit to

11

a public key (y, z) for which it knows logg y.

Soundness This follows from the soundness of the zero-knowledge proof used
in the signing algorithm and the fact that, under anonymity, the adversary
cannot know the secret key of honest users.

Anonymity This boils down to a straightforward reduction to the DDH.

6.2 Efficiency

Just to give a flavour of the efficiency of the scheme above, suppose it is
implemented based on an elliptic curve group with lg q ≈ 160. In that case
a single user’s public key consists of two points on the elliptic curve, taking
about 320 bits in total (using standard point compression techniques). The
public key of a group of N members will be approximately 320N bits long. A
signature takes 320 bits for publishing T1 and T2 plus an additional 320 bits
per group member for the proof of knowledge, i.e., a grand total of 320(N +1)
bits for a signature.

7 Large Groups

Our proposal is based on the group signature scheme of Ateniese et al. (2). In a
nutshell, each user is issued with a triple (A, e, x) such that Ae = axa0 mod n.
The pair (A, e) is public and linked to the identity of the user, the value x is
his secret. A signature is basically a proof of knowledge of such a pair, made
non-interactively using the Fiat-Shamir heuristic (this is where the message
comes in).

The scheme still needs a revocation scheme to be complete. Various revocation
principles have been proposed ((3), (10), (15) and (26)), but (3) and (10) are
not efficient enough and (26) is broken. There remains the article of Camenisch
and Lysyanskaya (15) based on earlier work by Barić and Pfitzmann (4) and
that is the one we will use in the following. Basically, a revocation manager
publishes u and v such that v = u

∏
i
ei over all group member i. Camenisch

and Lysyanskaya fix a value for u and, by changing v, users are added or
removed from the qualified list. To determine the qualified list, two sets are
maintained, Eadd and Edel. The set of qualified users is precisely those with
a value e ∈ Equal = Eadd\Edel and the public key should at any time satisfy

v = u

∏
e∈Equal

e
(if the public key is corrupt, we will by definition assume that

no user is qualified).

12

Clearly qualified users will be able to proof knowledge of an e-th root of v with
a corresponding membership certificate simply by computing B = u(

∏
i
ei)/e

where ei ∈ Equal. Camenisch and Lysyanskaya however do not publish u and
show that in fact the scheme can be made more efficient: users only need to
update their ’root’ when other users are added or deleted and this update is
linear in the number of modifications, but constant in the number of users
that do not change status.

We claim that publishing u is beneficiary for two reasons. First of all it ensures
that qualified users always have a membership certificate, even in the face of
a corrupt revocation manager. Secondly it allows us to present an alternative
that removes the update necessity when users are added. Normally when a
user with exponent e is added, the revocation manager computes a new value
v by ve and hence all other users have to raise their secrets by e as well to keep
track of the right root of v. However, the revocation manager might equally
well update u by u1/e and computing v1/e for the new list member. Since
this does not change v, other users do not need to change their respective B’s.
Note however that this trick falls outside of the standard dynamic accumulator
theory used by Camenisch and Lysyanskaya (15), so we cannot carbon copy
their security proof. Moreover, it requires that either MR can compute roots,
or it already knows a predetermined set of roots for the initial value of u,
in which case MJ must be forced to use these predetermined e’s during the
Join-protocol.

We have to introduce some security parameters and refer to the original work
by Ateniese et al. (2) for more details. Following Brickell et al. (11), we do pro-
vide recommendations for the parameters (in parentheses). We will need ε > 1
and integers k (80) and lp (1024). Moreover, λ1 (4258), λ2 (4096), γ1 (4422) and
γ2 (4260) will denote lengths that define the intervals Λ = (2λ1−2λ2 , 2λ1 +2λ2)
and Γ = (2γ1 − 2γ2 , 2γ1 + 2γ2). Furthermore, we will need a collision-resistant
hash function H ′ : {0, 1}∗ → {0, 1}k.

7.1 Setup Protocol

Setup is run by the group manager in two different incarnations: one called
MJ running the join protocol and one responsible for revocation MR. The
join manager is the most important one in the sense that MJ should remain
uncorrupted to achieve soundness, whereas MR may be corrupted.

(1) Manager MJ selects distinct primes p′ and q′ of size lp, such that p =
2p′+1 and q = 2q′+1 are primes. It computes and publishes the modulus
n = pq together with a proof that n is a safe RSA-modulus (1). It keeps

13

the factorisation of n as secret key.
We assume that publishing n implicitly defines a hash function H :

{0, 1}∗ → QR(n). In the random oracle model, H ′ can be assumed to
produce a distribution statistically close to the uniform one of generators
of QR(n) and that different calls to H ′ produce indepedent and hence
uncorrelated outcomes unless the calls are on the same input. In partic-
ular, nothing will ‘leak’ about respective discrete logarithms, not even to
MJ who knows the factorisation of n.

(2) Manager MJ chooses random elements a, a0, g and h in QR(n) and pub-
lishes them. It sets up (empty for now) a database DB.

(3) Manager MR chooses random elements u, f in QR(n), sets v = u and
publishes u, v and f . It sets up (empty for now) Eadd and Edel. For
anonymity against MR it is essential that f is uncorrelated to (g, h).

At the end of this protocol, we denote the list public key by pk = (n, a, a0, g, h, u, v, f)
together with DB, Eadd, Edel, and denote MJ ’s private key by skM = p′, Note
that MR does not have a private key specific to the group signature scheme,
although it is implicitly understood to have a legally binding key outside the
group signature scheme in order to sign its part of the group public key (u, v).

7.2 Join Protocol

This algorithm is based on the Join-protocol that is part of the group signature
scheme by Ateniese et al. (2).

(1) User i and manager MJ engage in a two-party protocol, at the end of
which the user knows x ∈ Λ and the manager knows ax mod n. The
protocol is such that the user cannot influence the choice (or distribu-
tion) of x and the manager learns nothing beyond ax mod n (this can be
formalized (24)).

(2) The manager picks a prime e ∈ Γ not yet in DB and computes A =
(axa0)

1/e mod n. It sends (A, e) to the user.
(3) The user checks that neither A nor e already occurs in the database,

that e is a prime in Γ and that Ae = axa0 mod n. If so, it returns (A, e)
toghether with a legally binding signature on it incorporating (a, a0, n).

(4) Manager MJ adds (A, e) to the database, together with i’s identity and
signature.

(5) Manager MR checks that e is a prime in Γ that occurs only once in the
database. If so, it adds e to Eadd, sets B = v, sends B to the user, and
updates the public key by v = ve mod n. In our variation MR leaves v
alone, updates u = u1/e and sends B = v1/e to the user.

14

During this protocol, a new list member i will obtain from the managers a
private key ski = x and a membership certificate (A, e,B) such that Ae =
axa0 mod n and Be = v mod n. Note that the membership certicate is public:
(A, e) is part of the database and B can be recomputed based on u, v and the
sets Eadd and Edel.

7.3 Revoke Protocol

In case of a revocation of the list member i with membership certificate
(Ai, ei, Bi), manager MR has to compute a new value for v being v1/ei mod n.
He then modifies adds ei to Edel and publishes the new v and Edel.

Although it seems revocation requires an ei’th root computation on MR’s
behalf, involving the factorisation of n, the group manager can actually re-
compute v based on the fixed element u and the sets Eadd and Edel. Note that
the workload for the group manager for revoking one group member is linear
in the number of participants this way. If MR does know the factorisation of
n, it can obviously perform the root computation directly and independently
of the number of participants.

If it is undesired to give MR access to the secret key of MJ , an efficient
solution is the introduction of a second modulus n′ of which only MR knows
the factorisation. In this case u, v, and f will be elements of QR(n′). Using
a different group for the revocation manager only marginally complicates the
proofs needed in the Sign protocol (the main tool is a proof of knowledge of a
discrete logarithm with respect to different modulus, see e.g. (8; 7)).

7.4 Update Protocol

After a Registration protocol, a list member i (using Eadd) has to replace Bi

in his membership certificate by Be
i mod n, where e is a new entry of Eadd.

However, if our variation is used where MR updates u instead of v, old list
members do not have to update their key when new members join.

After a Revocation protocol revoking user i, a list member j 6= i (using Edel)
has to replace the value Bj in his certificate by Bb

jv
a mod n where a and b are

such that aej + bei = 1 and where ei is a new entry of Edel.

In either case, the user j always knows a couple (ej, Bj) such that B
ej

j =
v mod n.

15

7.5 Sign Protocol

In the original scheme of Ateniese et al., the signer first publishes T1 =
Aig

w mod n, T2 = hw mod n, and T3 = geihw mod n, where w is a randomly
chosen value, followed by a proof of knowledge of ei, xi, w, and (eiw) such that
T e

1 = axa0g
(eiw), T2 = hw, T ei

2 = h(eiw), and T3 = geihw, all modulo n. The
proof of knowledge includes range checks on x and e, but does not involve the
primality of e. The main tool is a proof of knowledge of a discrete logarithm
in a group of unknown order (see e.g. (14; 8; 7; 24)).

Our first observation is that publishing T3 and explicitly proving knowledge of
w is actually superfluous in the above scheme (or, for that matter, in a whole
range of schemes derived from it). Our second observation is that T1 and T2

both seem necessary, even if opening of the signature based on knowledge of
α = logg h is not required. Our third observation is that publishing H(T)x mod
n will allow detectability, where T is the time frame. Finally, we remark that
including Bfw in the signature will show that the user is qualified (cf. (15)).

This leads us to the following signing algorithm for message m, time frame T
and based on membership certificate (A, e, x, B).

(1) The signer picks w at random modulo n, and computes

T1 = Agw mod n

T2 = hw mod n

T3 = Bfw mod n

T4 = tx mod n

(2) The signer proves knowledge of e ∈ Γ, x ∈ Λ, and existence of (ew) such
that

T e
1 = axa0g

(ew) mod n

T e
2 = h(ew) mod n

T e
3 = vf (ew) mod n

T4 = tx mod n

where the message to be signed is hashed into the challenge.

The proof of knowledge is fairly standard and takes just over three elements,
each slightly bigger than n2.

16

7.6 Verify and Rely Protocols

A verifier can check the validity of a signature by simply verifying the proof
of knowledge.

Moreover, everyone who has access to all signatures for a particular time frame
can easily see if a user has signed twice or more by observing the value of T4.
The user cannot cheat (by using another value) because T4 is linked with T1

by the proof of knowledge and the private key x

7.7 Security of the Proposed List Signature Scheme

In this section, we examine the security of our list signature scheme. Once
again, since we did not provide a formal model of security, we suffice with an
informal argumentation why the list signature scheme just presented is secure.

Correctness The first clause of correctness is satisfied because an honest
user i will only sign a pair (A, e) if he knows an x such that (A, e, x) is a
valid certificate. Moreover, a user will only be classified as qualified if e ∈
Equal and v = u

∏
e∈Equal

e
, from which B satisfying Be = v can be efficiently

reconstructed. Hence any honest qualified will have the knowledge to pass
through the NIZK proof required for a signature (where we use completeness
of this proof).

The second clause of correctness is also satisfied, since the only way an ad-
versary can cause detection is by posting a signature for the same time frame
with tx, including a proof of knowledge of a value x′ such that x′ = x mod pq′

where x is the user’s secret key. But if the adversary knows such an x′, he can
also identify signatures from that user, breaching anonymity.

Soundness We claim that the list signature scheme is sound against attacks
excluding the Join manager. Note that the MJ can always introduce ghost
members that have valid certificates but that do not appear in the database.
This holds even if the revocation manager is not corrupted and uses a different
group of order unknown to MJ , since the ghost users can piggyback on the
e’s of honest users. Soundness is based on the following argumentation.

(1) Without loss of generality we can assume that the adversary knows a
value α = logh g and a value β = logh f , since knowledge of these values
only adds strength to the adversary.

(2) If an adversary posts a valid signature (T1, T2, T3, T4), he also proofs,
by virtue of the soundness of the zero-knowledge proof in the signature,
that he knows e ∈ Γ and x ∈ Λ for which an (ew) exists such that

17

T e
1 = axa0g

(ew), T e
2 = h(ew), and T e

3 = vf (ew). But then (T−α
2 T1)

e = axa0

and (T−β
2 T3)

e = v. Since we assume the adversary knows α and β, it can
compute a valid membership certificate (A, e, x, B) based on any valid
signature it issues. Note that the random oracle model is used for the
soundness of the NIZK-proof.

(3) By virtue of the proof of equality of x in T4 and x in the membership cer-
tificate, each certificate can be used only once within the same timeframe
without triggering detection.

(4) Under the strong RSA assumption, the Join-protocol cannot be used to
obtain more certificates than queried for (2, Theorem 1).

(5) Under anonymity of the users (see below), the value x of honest users is
unknown for the adversary, hence certificates of honest users are of no
avail.

(6) One cannot piggyback on the activation of an honest user because of the
security (under the strong RSA assumption) of the dynamic accumulator
used for list management (15).

Anonymity First of all, if the Join-protocol is correctly implemented, it will
only leak ax mod n (some care has to be taken to shield the protocol against
concurrent attacks).

In the random oracle model the proof of knowledge that is part of the sig-
nature can be proven statistically zero-knowledge (note that concurrency is
not an issue, since a signature is a one-round protocol). Hence all that leaks
from a signature is the quadruple (Agw, hw, Bfw, tx). An adversary that could
distinguish anything about A and/or B would brake the semantic security
of ElGamal encryption, which is hard under the Decisional Diffie Hellman
assumption. Hence a signature essentially only leaks tx. Luckily the prob-
lem of distinguishing the distribution (a, t1, t2, . . . , tl, a

x, t1, . . . , t
x
l) with a and

t1, . . . , tl uniformly random in QR(n) and x in Γ from the one of 2l + 2 uni-
formly distributed elements in QR(n) reduces to standard DDH.

7.8 Efficiency

The group’s public key consists of the modulus n and six elements of QR(n),
taking in total 7168 bits. A signature involves the posting of four elements in
QR(n) together with a proof of knowledge of about 3 elements slightly bigger
than n2. In total a signature can be expected to take about 23250 bits. Hence
for the schemes presented in this work, at around 70 participants the large
group scheme becomes more efficient than the one based on small groups and
the CDS-technique.

We would like to point out though that recently more efficient group signature

18

schemes have appeared for large groups, that can also be adapted to list sig-
nature schemes. In fact, the direct anonymous attestation scheme by Brickell
et al. (11) is already very close to a list signature scheme if the TPM and
the host in their scheme are regarded as a single user. On the downside we
would like to note that presently all large group signature schemes seem to
be based on the Strong RSA assumption (and the DDH), whereas the small
group schemes can be based on just a group in which the DDH is hard, al-
lowing groups over elliptic curves. Given the current track record of attacking
the respective problems (27), it is to be expected that the moduli for the large
group schemes have to grow faster than the group sizes of the elliptic curves,
thus the break-even point can be expected to shift preferring small group and
list signature schemes.

8 Application to Electronic Voting

Many proposals for electronic voting schemes use blind signatures as a build-
ing block. In such schemes, each voter is issued a single blind signature for use
in a particular election. During the election, the voter uses its blind signature
to authenticate a vote, which is submitted via an anonymous channel. The
election result is determined by collecting all submitted votes and accompa-
nying blind signatures. The security of these voting schemes relies on the fact
that blind signatures cannot be forged, accepting each blind signature at most
once to prevent voters from voting multiple times. Finally, ballot secrecy is
achieved since the blind signatures used to authenticate a vote do not reveal
any information on the identity of the voter who submitted it.

We note that list signatures can be used as a substitute for blind signatures
in such voting schemes. Instead of authenticating a vote by means of a blind
signature, a list signature is used, preserving the security and privacy prop-
erties of the voting scheme. A first advantage of the use of list signatures is
that there is one less interaction for the voter during the election process. An-
other potential advantage is that the computational complexity and storage
complexity improves for the voters. In a list signature scheme, the storage for
a user is O(1) and the work for generating a signature is also O(1) (assuming
a scheme for large groups). Also, there is no practical limit on the number of
signature that can be produced by a user.

When using blind signatures, a user must decide beforehand how many blind
signatures it wishes to produce. There are techniques to limit the storage
and work when handling batches of blind signatures. Such techniques were
introduced by Chaum (at DigiCash), and later investigated by Fiat (22) and
Schoenmakers (30). These ideas can be extended to ’packing’ many blind
signatures, but achieving both O(1) storage and O(1) work may require addi-

19

tional assumptions.

References

[1] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime
products. In Yung (33), pages 417–432.

[2] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and
provably secure coalition-resistant group signature scheme. In M. Bellare,
editor, Advances in Cryptography—Crypto’00, volume 1880 of Lecture
Notes in Computer Science, pages 11–15. Springer-Verlag, 2000.

[3] G. Ateniese, D. Song, and G. Tsudik. Quasi-efficient revocation of group
signatures. In M. Blaze, editor, FC’02, volume 2357 of Lecture Notes in
Computer Science, pages 183–197. Springer-Verlag, 2003.

[4] N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop
signature schemes without trees. In Fumy (23), pages 480–484.

[5] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construc-
tion based on general assumptions. In E. Biham, editor, Advances in
Cryptography—Eurocrypt’03, volume 2656 of Lecture Notes in Computer
Science, pages 614–629. Springer-Verlag, 2003.

[6] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. Technical Report 77, IACR’s ePrint Archive,
2004.

[7] F. Boudot. On the soundness of Girault’s scheme. Poster paper of Euro-
crypt 2000. Rump Session, 2000.

[8] F. Boudot and J. Traoré. Efficient publicly verifiable secret sharing
schemes with fast or delayed recovery. In V. Varadharajan and Y. Mu,
editors, ICICS’99, volume 1726 of Lecture Notes in Computer Science,
pages 87–102. Springer-Verlag, 1999.

[9] C. Boyd, editor. Advances in Cryptography—Asiacrypt’01, volume 2248
of Lecture Notes in Computer Science. Springer-Verlag, 2001.

[10] E. Bresson and J. Stern. Efficient revocation in group signatures. In
K. Kim, editor, PKC’01, volume 1992 of Lecture Notes in Computer Sci-
ence, pages 190–206. Springer-Verlag, 2001.

[11] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation,
2004.

[12] C. Cachin and J. Camenisch, editors. Advances in Cryptography—
Eurocrypt’04, volume 3027 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[13] J. Camenisch. Efficient and generalized group signatures. In Fumy (23),
pages 465–479.

[14] J. Camenisch. Group Signature Schemes and Payment Systems Based on

20

the Discrete Logarithm Problem. PhD thesis, ETH Zurich, 1998.
[15] J. Camenisch and A. Lysyanskaya. Efficient revocatioin of anonymous

group membership certificates and anonymous credentials. In Yung (33),
pages 93–118.

[16] S. Canard and J. Traoré. On fair e-cash systems based on group signature
schemes. In R. Safavi-Naini and J. Seberry, editors, ACISP’03, volume
2727 of Lecture Notes in Computer Science, pages 237–248. Springer-
Verlag, 2003.

[17] D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brick-
ell, editor, Advances in Cryptography—Crypto’92, volume 740 of Lecture
Notes in Computer Science, pages 89–105. Springer-Verlag, 1993.

[18] D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor,
Advances in Cryptography—Eurocrypt’91, volume 547 of Lecture Notes in
Computer Science, pages 257–265. Springer-Verlag, 1991.

[19] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Y. Desmedt, ed-
itor, Advances in Cryptography—Crypto’94, volume 839 of Lecture Notes
in Computer Science, pages 174–187. Springer-Verlag, 1994.

[20] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally
efficient multi-authority election scheme. In Fumy (23), pages 103–118.

[21] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identifica-
tion in ad hoc groups. In Cachin and Camenisch (12), pages 609–626.

[22] A. Fiat. Batch RSA. Journal of Cryptology, 10(2):75–88, 1997.
[23] W. Fumy, editor. Advances in Cryptography—Eurocrypt’97, volume 1233

of Lecture Notes in Computer Science. Springer-Verlag, 1997.
[24] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Cachin

and Camenisch (12), pages 571–589.
[25] A. Kiayias and M. Yung. Group signatures: Provable security, efficient

constructions and anonymity from trapdoor holders. Technical Report 76,
IACR’s ePrint Archive, 2004.

[26] H. Kim, J. Lim, and D. Lee. Efficient and secure member deletion in group
signature schemes. In D. Won, editor, ICISC’00, volume 2015 of Lecture
Notes in Computer Science, pages 150–161. Springer-Verlag, 2000.

[27] A. K. Lenstra. Unbelievable security: matching AES security using public
key systems. In Boyd (9), pages 67–86.

[28] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Boyd
(9), pages 552–565.

[29] C. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4:161–174, 1991.

[30] B. Schoenmakers. Basic security of the ecash payment system. In
B. Preneel and V. Rijmen, editors, State of the Art in Applied
Cryptography, volume 1528 of Lecture Notes in Computer Science,
pages 338–352. Springer-Verlag, 1997. Correct version available at
http://www.win.tue.nl/ berry/papers/cosic.pdf.

[31] M. Stam. Toggling schemes for electronic voting. Master’s thesis, Tech-

21

nische Universiteit Eindhoven, 1999.
[32] J. Traoré. Group Signatures and Their Relevance to Privacy-Protecting

Off-Line Electronic Cash Systems. ACISP’99, volume 1587 of LNCS,
pages 228-243. Springer-Verlag, 1999.

[33] M. Yung, editor. Advances in Cryptography—Crypto’02, volume 2442 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

22

