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Abstract. We present two (related) dedicated hash functions that de-
liberately borrow heavily from the block ciphers that appeared in the
final stages of the AES process. We explore the computational trade-off
between the key schedule and encryption in a block cipher-based hash
function and we illustrate our approach with a 256-bit hash function
that has a hashing rate equivalent to the encryption rate of AES-128.
The design extends naturally to a 512-bit hash function.

1 Introduction

After recent cryptanalytic advances [37,38] the need for new hash functions has
become acute. In response NIST has made a call for proposals [28] for the devel-
opment of a new Advanced Hash Standard (SHA-3). However most commentators
would probably agree that the field of hash functions has, until recently, been
somewhat neglected and that the current knowledge of hash function design is
somewhat fragmented. So difficult are the starting conditions for the develop-
ment of the AHS that it is not always straightforward to exactly articulate the
properties we want from a hash function. Even worse, there is little agreement
on even the basic features for a successful hash function design.

By way of contrast, if we were to turn the clock back to the start of the
AES process, at that time we already had five years of block cipher theory and
design after the development of linear cryptanalysis [20] and ten years after the
development of differential cryptanalysis [8]. And while all the AES submissions
were very different, their designs had evolved from several years of research
experience gained during the mid-1990s.

In this paper we propose two new (related) dedicated hash functions dash-
256 and dash-512. Whilst they are, in principle, suitable for submission to the
NIST hash function development process, this is not our intention. Instead we
prefer to see the paper as research-oriented and our work is prompted by the
following questions :

1. How close can we stay to AES proposals in the design of a hash function?
2. Can we use an unusual key schedule design to our advantage?
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2 Background, goals, and design criteria

We informally recapitulate some of the classical goals for a hash function. A
cryptographic hash function H takes an input of variable size and returns a hash
value of fixed length while satisfying the properties of preimage resistance, second
preimage resistance, and collision resistance [21]. For a secure hash function that
gives an n-bit output, compromising these properties should require 2n, 2n, and
2n/2 operations respectively. A more thorough set of hash function requirements
for the SHA-3 development process is available at [28].

The pioneering work of Merkle and Damgård [14,22] showed how to construct
a collision-free hash function from a compression function that has a fixed-length
input. This input consists of a chaining variable and a message extract while
the new value of the chaining variable is produced as output. The chaining
variable will be denoted by vi and the message extract will be denoted by mi.
Thus, at iteration i of the Merkle-Damgård construction, we compute vi+1 =
compress(mi, vi). The advantages and disadvantages of the Merkle-Damgård
approach are, by now, well-established. On the positive side are its simplicity
and the proof of security that (loosely speaking) relates the collision-resistance
of the hash function to that of the compression function. On the negative side
are cryptanalytic results that take advantage of the chaining that is used in a
repeated application of the compression function [15,16,18,19]. These results help
provide a greater understanding of the Merkle-Damgård approach, particularly
when hashing exceptionally long messages.

Design decisions.

Our design philosophy for dash-256 (and dash-512) can be summarised as: keep
it simple and use established techniques. In practise this resulted in the following:

1. We base the hash function around the use of a compression function and the
Merkle-Damgård paradigm [14,22]. To avoid some structural deficiencies we
use the HAIFA model [7] for formatting the inputs.

2. For the compression function we use a block cipher and Davies-Meyer [29].
3. We revisit the AES process and appeal to the vast pool of results [25] to

design a block cipher at the heart of the compression function.
4. We push the parameters of a block cipher key schedule so as to better un-

derstand the range of options for a practical hash function design.

By way of background, we now consider each issue in turn.

Using Merkle-Damgård and Davies-Meyer.

While there have been proposals for alternatives to Merkle-Damgård, e.g. the
sponge construction [6], we focus on the body of work that considers adjustments
to Merkle-Damgård, such as those of Coron et al [13], Biham and Dunkelman [7],
and Rivest [34]. These proposals share the property that Merkle-Damgård is
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used almost as is, but that additional inputs are included at each iteration of
the compression function. They vary in the form of inputs and the resultant loss
of efficiency, but recent work [2] has shown that the more efficient proposal by
Rivest [34] does not seem to provide the additional security intended. With this
in mind we use the HAsh Iterative FrAmework [7], or HAIFA model.

For the compression function itself we use a block cipher in Davies-Meyer
mode. This is a mode for which there is a proof-of-security, i.e. the security
of Davies-Meyer can be reduced to that of the underlying block cipher. If we
denote encryption of a plaintext p under a key k by enck(p) then the output of
the Davies-Meyer mode is given by enck(p) ⊕ p. When used as a compression
function, for which the chaining variable input is denoted vi and the message
input is denoted m, the next value of the chaining variable output from the
compression function is given by vi+1 = encm(vi) ⊕ vi. We note that there
are some unusual properties of Davies-Meyer. For instance it is easy to find
fixed points for this construction. By choosing vi = enc−1

m (0) we have that
compress(m, vi) = vi since encm(vi)⊕vi = vi. However the HAIFA model helps
to mitigate the effect of these, as well as countering other recent cryptanalytic
work on long-message attacks [15,16,18]. By contrast the Davies-Meyer mode
has one major advantage over other single block cipher constructions [11]. Note
that for the Davies-Meyer transformation encm(vi) ⊕ vi the block size is given
by |vi| and the key size by |m|. For the AES these are restricted to 128 bits and
128/192/256 bits respectively. However our design allows the block size to vary
between 256 and 512 bits while the “key” length is eight times larger; this permits
larger message inputs on each iteration and a more competitive throughput. And
for block cipher designs there is no better place to look than the AES process [25].

Revisiting the AES process.

Returning to the AES process with the benefit of hindsight is an interesting
experience. We are not the first to do so: the designers of present [12] used
the AES finalist Serpent [9] as a starting point for the development of their
ultra-compact block cipher. We therefore hope to be able to make similarly
advantageous observations by considering two other finalists: Rijndael (i.e. the
AES [24]) and RC6 [32]. Rijndael is now very well known. Like Rijndael, RC6
was a simple proposal that offered good software performance on modern pro-
cessors [3]. However the 32-bit squaring operation didn’t scale quite as well to
8-bit processors or hardware implementations. However, of particular interest to
us here is the key schedule for RC6. While it is computationally heavy, it allows
very long keys. This is ideal for a hashing application as was observed by the
RC6 designers during the AES process [33].

So the block cipher that lies at the heart of dash-256 and dash-512 will use
a topology that is similar to RC6 and CLEFIA [36] along with a key schedule
that is almost identical to that used in RC5 and RC6. However we will make
changes to some of the operations used to improve scalability and to reduce the
potential exposure to side-channel analysis in MAC-applications [27].
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Fig. 1. One round of the encryption routine for A256 with the 256-bit input
(A||B||C||D) being transformed into the 256-bit output (A′||B′||C′||D′).
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Block ciphers and key schedules.

The performance of a block cipher is dependent on the cost of both the encryption
routine and key setup. For bulk encryption the cost of a single key setup is
amortized over the entire encryption session. However, when used as the basis
for a hash function, the cost of the key schedule becomes a significant factor.
Most modern ciphers, including the AES, tend to have a lightweight key schedule.
In this paper, we want to explore what happens when we put more work into the
key schedule. Given the importance of key schedule performance for hashing, at
first sight this appears to be the wrong direction. Indeed for constructions where
the message and chaining value must be the same size, such as Mateas-Meyer-
Oseas [21] and Miyaguchi-Preneel [21] (which is used in Whirlpool [5]) this would
be the case. However, the Davies-Meyer construction allows us to take a very
large message block as “key” and provided there is sufficient mixing of the key
there is no reason why a good performance profile cannot be attained.

3 The Specification of dash-256 and dash-512

Both dash-256 and dash-512 are built around a dedicated block cipher which we
will name A256 and A512 respectively. For ease of exposition we will concentrate
on dash-256 and A256 and describe the cipher in terms of an encryption routine
and a key schedule. The necessary changes for dash-512 are given in Section 3.4.
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Fig. 2. The mixing operation M64 that is used in A256. Note that the S-boxes and
MDS transformations are those specified in the AES.
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3.1 The encryption routine for A256

One encryption round (out of the 30 required) is illustrated in Figure 1. Each
strand represents a 64-bit word and the key schedule, see Section 3.2, generates
64 subkeys of which two are used as pre-whitening for strands B and D, 60
are used during the encryption process (two in each round), and two are used as
post-whitening on strands A and C before output. The data-dependent rotations
and multiplication in RC6 have been replaced in A256 with a confusion/diffusion
operation closely inspired by the AES. The mixing operation M64 is the natural
restriction of the AES diffusion layer to two columns, see Figure 2, and uses the
S-boxes and AES MDS transformation directly. This allows us to combine the
scalability of RC5 and RC6 with the AES diffusion operations.3 However, AES
diffusion is somewhat structured so the one-bit and eight-bit rotations help to
break some alignments and avoid some trivial linear approximations.

3.2 The key schedule for A256

By using a key schedule that is close to that used in RC5 and RC6 we aim to
leverage its long-standing in the literature and the opportunities for analysis
during the AES process. We also take advantage of the fact that it allows long
key inputs. The original key schedule can be found in either of [30,32] though
we follow the example set in the encryption routine and replace the single data-
dependent rotation in the key schedule with the AES-inspired diffusion operation
M64. This is illustrated in Figure 3. The input to be hashed at an iteration of
the compression function (after HAIFA formatting) will be 256 bytes long and
loaded into an array of 32 words of 64 bits L[0], . . . , L[31]. From this we generate
3 Naturally other MDS transformations [17] and S-boxes may offer other advantages.
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Fig. 3. The key schedule for A256. The input is represented as an array L[·] of 32
64-bit words and the output is a set S[·] of 64 64-bit subkeys. The constants P64 =
0xB7E151628AED2A6B and Q64 = 0x9E3779B97F4A7C15 are those used in RC5 and RC6.

S[0] = P64

for i = 1 to 63 do S[i] = S[i− 1] + Q64

A = B = i = j = 0
for s = 1 to (3× 64) do

{
A = S[i] = (S[i] + A + B)<<< 3
B = L[j] = (L[j] + A + B)⊕M64(A + B)
i = (i + 1) mod 64
j = (j + 1) mod 32

}

Fig. 4. The chained iteration of the compression function. In the HAIFA model,
the initial value v0 is computed from an IV (Section 3.3) which we choose to be
0x FEDCBA9876543210 || 0123456789ABCDEF || FDB97531ECA86420 || 02468ACE13579BDF.
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64 words of 64 bits which are stored in an array S[0, ..., 63] and used as subkeys
during encryption.

3.3 The full specification of dash-256

We restrict ourselves to the case of dash-256 and since we follow the HAIFA
construction there are three inputs to the hash function; a messageM of length
n bits with n < 264, a salt value S of 64 bits, and the length d of the hash output
or message digest. Internally, we use a 64-bit counter that takes a value denoted
Ci at iteration i of the compression function. The counter stores the value—in
little-endian notation—of the number of bits ofM that have been hashed so far.

To deal with incomplete blocks we padM to give a related messageM′. The
input to the compression function xi is of the form [Mi||Ci||S] with |Ci| = |S| =
64 and so we generate a padded messageM′ that is of length t×1920 bits where
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Fig. 5. The mixing operation M128 that is used in A512. Note that this is exactly the
diffusion layer specified in the AES.
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t is the smallest integer for which t× 1920 > n+ 73, the strange number being
explained by what follows: padding is always applied and appends a single ‘1’
bit and as many ‘0’ bits as needed so as to leave room for nine bits that are set4
to the binary representation of the hash output length d and a further 64 bits
that are reserved for the binary representation of n. The resultant M′ is then
divided into t blocks M1, . . ., Mt, with each Mi being of length 240 bytes.

At each iteration of the compression function there are two inputs; the current
value of the chaining variable vi which is a 256-bit input and the 2048-bit xi =
[Mi||Ci||S] that is being processed and we have vi = compress(xi, vi−1) for
1 ≤ i ≤ t. The initial value v0 is computed as v0 = compress(d||IV||0) for a
master IV, as required in HAIFA, and the output is given by the value vt. A
hash value of any shorter length, such as 224 bits, can be derived by truncation
from the left, i.e. we use the rightmost bits. This is indicated by T in Figure 4
and would, of course, require that the representation of d in the padding and
computation of v0 be changed accordingly.

3.4 The specification of dash-512

The essential difference between dash-256 and dash-512 is that the first oper-
ates on 64-bit words while the second operates on 128-bit words. This is a direct
benefit of the elegant scalability designed into RC5 [30]. All-but-one of the op-
erations in dash-256 scale obviously between the versions, the one exception
being the M64 function. However for dash-512 we use M128 which is a 128-bit
permutation that is identical to one round of the AES without the key addition.
4 This is required in the HAIFA model.
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This is illustrated in Figure 5. All other parts of the algorithm, illustrated in
Figures 1, 3, and 4, scale in the obvious way and any 64-bit word operation is
replaced by a 128-bit word operation. In Figure 3 the equivalent constants P128

and Q128 can be defined as described in [30] for A512. Future analysis will reveal
the appropriate number of rounds for A512 while padding will follow the HAIFA
model and this can also be used to compute a 384-bit hash value by truncation.

4 Security Analysis

The security of dash-256 and dash-512 can be split into a consideration of the
underlying block cipher and then of the compression function and chaining mode.
The latter concerns are handled by the results of Damgård [14], Merkle [22],
Black et al [11], and Biham and Dunkelman [7] so for reasons of space we con-
centrate on the cipher within the compression function and particularly on A256.

4.1 The encryption routine in the component A256

Many cryptanalytic tools for block ciphers can be used against hash function so
we consider these classical techniques first.

Differential cryptanalysis. We can easily identify a lower bound on the num-
ber of active S-boxes for a differential in A256 (and A512) when the expanded
message words S[·] are the same for both pairs in a differential. The situation
where the expanded message words might induce a difference is considered in
the case of local collisions below.

Without loss of generality, we can suppose that we have a non-zero exclusive-
or difference in strand A. This will pass across a single round of A256 and A512

trivially. However it must induce a, for 1 ≤ a ≤ 8, active S-boxes in the following
round which, in turn, induce more active S-boxes in the rounds that follow. To
establish a lower bound on the number of active S-boxes we can appeal to the
properties of the MDS operation in M64 and M128 and observe that over two
adjacent active rounds there must be at least five active S-boxes. Thus over any
three rounds of A256 and A512—for which there is no difference in the expanded
message words—there will be at least five active S-boxes. This gives a differential
probability of less than 2−30. Since there are 30 rounds to A256 this leads to a
simple upper bound of 2−300 over the full encryption routine.

This basic analysis is crude in two significant ways. First, on the positive side
for the algorithm, it significantly under-estimates the number of active S-boxes.
Second, on the negative side, this crude analysis doesn’t immediately capture
situations where the array S[·] might be used to introduce a difference. However
analysis of the key schedule, see Section 4.2, and of local collisions later in this
section suggest that more complex differential phenomena are highly unlikely
and while more sophisticated analysis is underway, we expect this to confirm the
difficulty of applying differential techniques.
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Linear cryptanalysis. The fixed rotations during encryption with A256 (and
A512), see Figure 1, are intended to hinder the evolution of linear approximations.
Note that without the fixed rotations it would be straightforward to identify
linear approximations that held with probability 1 across infinitely many rounds.
In particular, if we were to use Γi to denote the single-bit parity mask with a
single one in position i, then we would have the following linear approximation
for a single round of A256 with no rotations:

(Γ0, 0, Γ0, 0)
one round (no rotations)
−−−−−−−−−−−−−−−−−−−−−−−−→ (0, Γ0, 0, Γ0).

This would hold with probability 1, i.e. with the maximum bias of 1
2 .

However the simple fixed rotations prevent such simple linear approximations
from developing. We note that there is an interesting effect if we were to remove,
or to change into exclusive-or, the operation used to introduce the expanded
message words S[·]. Let us call such a round a linearised-round and for this
linearised variant of A256 we will consider the parity mask consisting of all bits,
i.e. a mask of Γp = 0xFFFFFFFFFFFFFFFF. Then we would have that:

(Γp, 0, Γp, 0) one linearised round−−−−−−−−−−−−−−−−−−−−→ (0, Γp, 0, Γp)

with probability 1. Thus the linearised version of A256 (and A512) would be
vulnerable to this kind of analysis, a common enough situation when ciphers are
modified to facilitate analysis. However, with integer addition and an effective
key schedule such parity relations are quickly destroyed.

Three-round local collisions. Here we consider a typical disturbance correc-
tion strategy and how it might be used against A256. We consider the following
perturbative-corrective pattern for a three-round local collision and the linearised
version of A256, i.e. where the expanded message words S[i] are introduced using
exclusive-or. Consider the follow three rounds of expanded message

(∆S[i], 0, ∆S[i+ 2], ∆S[i+ 3], 0, ∆S[i]),

where ∆S[i] is a low-weight perturbative vector, and ∆S[i + 2] and ∆S[i + 3]
are deduced from the best differential of the AES S-box, i.e.

∆S[i+ 2] = (∆S′[i]) ≪ 1 and ∆S[i+ 3] = ∆S′[i]

where ∆S′[i] is such that PrC [M64(C ⊕∆S[i])⊕M64(C) = ∆S′[i]] is maximal.
The maximal differential probability of the AES S-box is 2−6, hence whatever
∆S[i] and∆S′[i], the probability of such a local collision for the linearised variant
of A256 is upper bounded by 2−12.

If we now return to the real A256 where the words S[i] are mixed through
modular addition, we can make the following analysis. For each difference bit in
A and B, A+ C and B+ C differ only in the same bits as A and B with probability
upper bounded by 2−r, where r is the number of different bits, with the exception
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of the most significant bit (MSB), in A and B. There are four additions to take
into account, one for each non-zero input expanded message word. Due to the
MDS property in M64 and M128, one must have Hwt(∆S[i])+Hwt(∆S[i+2]) ≥ 5
as well as Hwt(∆S[i]) + Hwt(∆S[i + 3]) ≥ 5 where we use Hwt to denote the
Hamming weight.

This means that there are at least six active bits across integer addition
that are not in the most significant position. Hence the probability of such a
local collision is upper bounded by 2−12 × 2−6 = 2−18. To do better than the
birthday attack, an attack on A256 would need an expanded message difference
that combines seven or less such local collisions. However this would imply that
the remaining 64-bit words in S[·] are identical for the two messages and there
is a vanishingly small chance that an attacker can manipulate message inputs so
as to give two arrays S[·] with the required values.

4.2 The key schedule in the component A256

By choice the key schedule for A256 is closely related to that used in RC5 and
RC6. In moving to the key schedule in A256 and A512 we have added some non-
linearity via a series of AES S-boxes. While experiments have shown an improved
avalanche of change as a result, this does not exclude some dedicated analysis.

The attack of Saarinen on RC6. During the first round of the AES process,
Saarinen made some interesting observations about the RC6 key schedule when
very long keys were used [35]. Let us assume that we choose a key length so
that the arrays L[·] and S[·] are of equal length.5 The important feature of the
key expansion, see Figure 3, is that state information is carried between the two
arrays by two words A and B. If we take two keys that are nearly equal except
for the last few words then, on the first pass through, only the last few words
of the L[·] and S[·] arrays will change. If the cryptanalyst is lucky, or if we can
find a high probability differential of the right form, the difference in the values
of A and B at the start of the second pass will be zero. When this happens, no
change is carried into the second pass and only the last few words of the L[·]
and S[·] arrays will have a non-zero difference.

Moving on, if we are lucky (since we cannot rely on a differential of sufficiently
high probability) the difference in the values of A and B at the start of the third
pass will be zero. If this happens then, on the third and final pass through
the arrays, only the later words in S[·] will change. Saarinen [35] was therefore
able to demonstrate ciphertexts generated by related keys that had an average
Hamming distance between them of 4.2 bits. This was later extended [23] to
demonstrate the existence of equivalent keys for this particular instance.

Two features are important for this attack. First, being able to identify a
short cancelling differential for the first pass. Second, the number of times we
pass through the L[·] array. In the case of RC6 with 128-bit blocks and 1308-bit

5 This is the simplest case, but variants exist for different array sizes.
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keys (the case looked at by Saarinen) we start the L[·] array three times. For the
first pass the difference in A and B is zero (by definition). For the second pass
it is zero by construction of the differential, and for the third pass we can use
the birthday paradox to find a pair of messages that generate a zero-difference
in A and B from a pool of 232 possibilities.

In the case of A256 and A512, however, the S[·] array will always be twice
the size of the L[·] array. Thus we will pass through the L[·] array six times.
The conditions we need on A and B at the start of each pass is a condition on
128 or 256 bits respectively. The first time it is trivially satisfied and we might
pessimistically assume that it can be satisfied with probability one the second
time.6 Then there remain three times for which the condition on A and B must
hold by chance before we process the S[·] array for the final time. Thus we have
a condition on 3× 128 bits (3× 256 resp.) which we expect to see fulfilled from
a pool of 2192 messages (2384 resp.) using the birthday paradox. However this is
worse than brute-force.

In fact the conditions to avoid the attack of Saarinen can be generalised and
we need to pass through the L[·] array at least four times and the S[·] array
at least three times. This is what we accomplish in dash-256 and dash-512.
Interestingly, in [33] the RC6 designers propose a 1024-bit key length when using
RC6, which is based on 32-bit words, for the most efficient hashing configuration.
This also satisfies our general requirement.

On the potential for collisions in the expansion. Consider two different
inputsMi andM ′i to an iteration of the compression function. These will be used
to initialise the L[·] array and after the expansion phase will give the final values
to the S[·] array. Clearly, if we derive the same S[·] array from different inputs
then we trivially have a collision over one iteration of the compression function.
However provided there is sufficient mixing of the L[·] and S[·] arrays, there are
no known weak or equivalent key phenomena for RC5 or RC6 and a brute-force
attack seems to pose a far greater concern. Of course this isn’t the full picture.
Even arrays that are identical only part of the time, or in the earlier words,
can still be useful to the cryptanalyst. However, assuming sufficiently thorough
mixing of the values in the S[·] array, collisions in the chaining variable would
seem to be easier to find than pairs of messages where five or more words in S[·]
are identical. Given 30 rounds, it is highly unlikely an exploitable weaknesses
will occur by chance.

The oneway-ness of the key schedule. The key schedule expands the
message-related input into a set of 64 subkeys. This is done in a complicated
way and it has been noted by various commentators that this delivers a certain
amount of one-wayness [30,35]. So even if attacks on the encryption process leak
information about the subkeys S[·] it would be very hard to relate this infor-
mation to the input Mi at the ith iteration of the compression function. Yet

6 This would require a sophisticated differential through several AES S-boxes.
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it is information about the input Mi that is needed to compromise either the
compression function or the resultant hash function.

The role of the key schedule. It is well-known that many hash function
designs are built around a dedicated block cipher. In such cases there is some
message mixing, i.e. a key schedule, and some state processing, i.e. an encryption
routine. In MD5 [31] the message-mixing involves message block repetition while
in SHA-1 [26] “key expansion” is a little more involved. However it remains simple
and without a strong “encryption” process it is somewhat vulnerable.

By contrast, in A256 and A512 we might view the key schedule as a com-
plex non-linear message expansion. This idea of “expansion” as a form of pre-
processing appears in [1] and has been used in other hash functions [10]. Given
such an expansion phase, we can then view the “encryption” as a complicated
way of distilling information into the 256-bit (or 512-bit) output. But is it better
to have more work done in the “expansion” or in the “distillation”? When looked
at in this way, traditional hash functions of the MD-family have a computation-
ally lightweight (almost trivial) expansion phase and compensate for this with
a heavier mixing phase. For dash-256 and dash-512 this is reversed and we
have a computationally heavy expansion paired with a lighter (though strong)
distillation phase. We believe that this approach is worth exploring and could
be better suited to the hashing environment where an attacker has complete
control over the inputs to the compression function. For compression functions
based on block ciphers, a simple key schedule will place a significant burden on
the encryption routine.

5 Performance

Assessing the performance of a cryptographic algorithm is tricky and often in-
complete. When we look at the operations in dash-256 it is likely that most
software implementations will use table look-ups for the S-box operation and
that this will be the dominant operation. For dash-256 there are 30×2×8 = 480
table look-ups during encryption and 192×8 = 1536 during key expansion giving
a total of 2016. Since 240 bytes are processed per compression function itera-
tion we have 8.4 look-ups per byte. In comparison encryption with the AES-128
requires 10 × 16 = 160 look-ups for encryption but only 16 bytes of plaintext
are encrypted giving an encryption cost of 10 look-ups per byte. Thus we might
expect the bulk processing performance of dash-256 to be comparable to the
bulk encryption rate of AES-128. This seems to be a very natural target since
they both offer the same 128-bit security. We can compare results from Wei Dai
(see [39] for details) with our first-cut optimised version of dash-256 where the
key expansion (exp.) and processing time (pro.) are separated out.7 The results
compare well to some other recent hash function proposals [4].

7 Note that pro. is not the encryption rate. If we used dash-256 for encryption then we
would need 480 table look-ups to encrypt 32 bytes giving a rate of 15 look-ups/byte.
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platform clock AES-128 SHA-256 DASH-256
(GHz) (cycles/byte) (cycles/byte) (cycles/byte)

[39] Opteron 2.4 15.9 21.5 -
exp. pro. total

Opteron 2.2 - - 14.4 3.1 17.5

Unfortunately the performance of dash-256 suffers on 32-bit machines. On the
P4, for example, a first-cut implementation runs at half the speed of AES-128
and we see that even basic operations over 64-bit words can exact a heavy price.

6 Conclusions

We have presented two, closely-related, dedicated hash functions. In contrast
to some other recent hash function proposals we have stayed close to known
constructions and deliberately looked back at the AES process to use techniques
that were analysed and discussed there. At the same time we have explored the
role of a computationally-heavy key schedule which allows us to hash a large
amount of message at each iteration. We believe that an appropriate balance
between security and speed can be achieved in this way and we encourage others
to explore the advantages and disadvantages of this approach.

Independently of the success of dash-256, we can see several directions in
which to take this work. Certainly we believe that some variants of dash-256 may
offer room for improvement. For instance, while the key schedule in dash-256 has
many interesting attributes, we feel that the design is too complex. And while
its long standing is a good sign, it would be more satisfying to say something
concrete about the security offered when such very long keys (messages) are
being used. The state size of dash-256 is large, though so is that of some other
hash function proposals, and we note that there would be an overhead when
hashing short inputs. The most significant downside, however, is that dash-256
is oriented to 64-bit operations. Instead we feel (with hindsight) that a new
design geared towards 32-bit operations would be a better starting point.

We believe that these are all interesting avenues to explore, as is the more
general question of the role of the key schedule when a block cipher is used as
the basis for a hash function. With this in mind, we hope that the simplicity
of our proposal will promote new and independent analysis of dash-256/512 in
particular and hash functions in general; something that we strongly encourage.
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