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Sébastien Canard1 and Aline Gouget2

1 Orange Labs R&D, 42 rue des Coutures, BP6243, F-14066 Caen Cedex, France.
2 Gemalto, 6, rue de la Verrerie, F-92190 Meudon, France.

Abstract. Regular cash systems provide both the anonymity of users
and the transferability of coins. In this paper, we study the anonymity
properties of transferable e-cash. We define two natural additional levels
of anonymity directly related to transferability and not reached by ex-
isting schemes that we call full anonymity (FA) and perfect anonymity
(PA). We show that the FA property can be reached by providing a
generic construction and that the PA’s cannot. Next, we define two re-
stricted perfect anonymity properties and we prove that it is possible
to design a transferable e-cash scheme where a bounded adversary not
playing the bank cannot recognize a coin he has already owned.

1 Introduction

Electronic cash systems aim at emulating regular cash. Users withdraw
coins from a bank, and next pay merchants using them. Then, merchants
deposit coins to the bank. Even if the property of transferability (i.e.
received cash can be spend later without involving the bank) is seen
as a fundamental property of regular cash, it is usually disregarded in
the electronic setting. This lack of interest for transferable e-cash may be
explained by the result given in [6] showing that it is impossible to transfer
a coin without increasing its size. However, this apparent drawback is not
always unacceptable for applications depending on the available amount
of storage data. The main advantage of the transferability of e-cash would
be the decrease of communications between the bank and all users.

The anonymity in (non transferable) e-cash systems is well-studied
in the literature. When introducing the transferability property into e-
cash schemes, new notions of anonymity appear that have not already
been described in the literature. These new anonymity notions related to
transferable e-cash are studied in this paper.

As far as we know, the first transferable e-cash schemes that provides
a weak level of anonymity has been proposed in [10, 11]. The anonymity
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level is said weak since the spenders identities are protected but it is
possible to link several spends of the same user.

Another method for transferring e-cash has been presented in [14,
6]. The anonymity level of this scheme is said strong since the spender
identities are protected and it is not possible to link several spends of
the same user. Very recently, two transferable e-cash schemes have been
proposed in [5]. Both schemes improve the efficiency of [14, 6] by reducing
the number of communications between the bank and users. One scheme
offers a computational strong anonymity while the other one offers an
unconditional strong anonymity. However, none of these schemes offers a
“perfect” anonymity of spends since it is always possible for an adversary
to recognize a coin that he has previously seen being spent.

There is a gap between the highest level of anonymity achieved by
the transferable e-cash schemes of the state-of-the-art and the impossi-
bility result given in [6] showing that transferable e-cash cannot fulfils an
unconditional “perfect” anonymity since an unbounded payer can always
recognize his own money if he sees it later in a payment.

In this paper, we contribute to reduce this gap, in one hand by showing
the possibility for an e-cash system to fulfil higher levels of anonymity,
and on the other hand by proving that a computational payer can always
recognize his own money if he sees it later in a payment, meaning that
transferable e-cash cannot provide a computational “perfect” anonymity.

In Section 2, we give formal definitions for transferable e-cash. In
Section 3, we focus on the security properties related to anonymity and
we introduce two new properties: the Full Anonymity (FA) meaning that
the adversary A is not able to recognize a coin he has already observed
during a spending between honest users, and the Perfect Anonymity (PA)
meaning that A is not able to decide whether or not he has already owned
a coin he is receiving. In Section 4, we show that a transferable e-cash
scheme can fulfil the FA property by providing a generic construction, and
that no scheme can fulfil the PA property by improving the impossibility
result given in [6]. In Section 5, we give evidence that it is possible to
design a PA scheme if we assume that the (not unbounded) adversary is
not the bank. Finally, we conclude in Section 6.

2 Transferable E-cash

In this section, we define the algorithms of transferable e-cash, the
variables and oracles used by the adversaries, and the classical security
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properties that are not related to anonymity; anonymity properties are
defined in Section 3. Note that our model can easily be extended to wallets
by using the compact e-cash techniques [2].

2.1 Algorithms

A transferable e-cash system involves two types of player: a bank B and
a user U . A coin is represented by an identifier Id and some values π
needed to prove its validity.

– ParamGen(k) is a probabilistic algorithm that outputs the parameters
of the system Par (including the security parameter k).

– BKeyGen(Par) (resp. UKeyGen(Par)) is a probabilistic algorithm exe-
cuted by B (resp. U) that outputs the key pair (skB, pkB) (resp. (skU , pkU )).

– Withdraw(B(skB, pkB, pkU , Par), U(skU , pkU , pkB, Par)) is an interac-
tive protocol where U withdraws from B one coin. At the end, U either
gets a coin C = (Id, π) and outputs OK, or outputs ⊥. The output of B
is either its view VWB of the protocol (including pkU ), or ⊥.

– Spend (U1(Id, π, pkU2 , Par),U2(skU2 , pkB, Par)) is an interactive pro-
tocol where U1 gives a coin to U2. At the end, either U2 outputs a coin
C = (IdC , πC) or ⊥, and either U1 saves that C is a spent coin and
outputs OK, or U1 outputs ⊥.

– Deposit (U(Id, π, skU , pkU , pkB, Par),B(skB, pkB, pkU ,L, Par)) is an
interactive protocol where U deposits a coin (Id, π) at the bank B. If
(Id, π) is not consistent/fresh, then B outputs ⊥1. Else, if Id already
belongs to the list of spent coins L, then there is an entry (Id, π′) and
B outputs (⊥2, Id, π, π

′). Else, B adds (Id, π) to its list L, credits U ’s
account, and returns L. U ’s output is OK or ⊥.

– Identify (Id, π, π′, Par) is a deterministic algorithm executed by B
that outputs a public key pkU and a proof ΠG. If the users who had
submitted π and π′ are not malicious, then ΠG is evidence that pkU is
the registered public key of a user that double-spent a coin.

– VerifyGuilt(pkU , ΠG, Par) is a deterministic algorithm that can be
executed by any actor. It outputs 1 if ΠG is correct and 0 otherwise.
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2.2 Global Variables

The set of user’s public (resp. secret) keys is denoted by PK = {(i, pki) :
i ∈ N} (resp. SK = {(i, ski) : i ∈ N}; ski =⊥ if user i is corrupted). The
set of views of supplied coin by oracles is denoted by SC and the set of
all coins owned by the oracles is denoted by OC. The set of deposited
electronic cash (corresponding to L) is denoted by DC.

2.3 Oracles

By convention, the name of an oracle corresponds to the action done by
this oracle.

Creation and corruption of users. Create(i) executes UKeyGen(Par) =
(ski, pki), it defines PK[i] = pki and SK[i] = ski and it outputs pki. The
oracle Corrupt(i, pki) defines PK[i] = pki and SK[i] =⊥ and it outputs
OK. Corrupt(i) outputs the value SK[i] = ski and it updates SK[i] =⊥.

Withdrawal protocol. Suppl() plays the bank side and it updates SC by
adding VWB with bit 1 to flag it as a corrupted coin. The oracle Withd(U)
plays the user U side and it updates OC by adding the value (U, Id, π).
The oracle Withd&Suppl(U) plays both sides and it updates OC as for
Withd(U) and SC by adding VWB with flag 0. It outputs the communica-
tions between B and U .

Spending protocol. The oracle Rcv(U2) plays the role of user U2 with se-
cret keys of user U2 and it updates the set OC by adding a new entry
(U2, Id, π). The oracle Spd(U1) plays the role of user U1 by spending a
coin in OC owned by user U1. It uses and updates the entry (U1, Id, π) of
OC as the Spend protocol describes it.
The oracle Spd&Rcv(U1, U2) plays the role of both U1 and U2 and it exe-
cutes the spending of a coin owned by user U1 to user U2. It updates OC
by adding the value (U2, Id, π) and by flagging the coin as spent by U1.
It outputs all the communications of the spending.

Deposit protocol. CreditAccount() plays the role of the bank and it up-
dates the set DC. If the executed Deposit protocol outputs (⊥2, Id, π, π

′),
then the oracle CreditAccount runs the algorithm Identify and outputs
the result of this algorithm on inputs (Id, π, π′). The oracle Depo(U) plays
the role of the user U during a Deposit protocol.
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2.4 Classical Security Properties not related to anonymity

Unforgeability. No collection of users can ever spend more coins than
they withdrew.

Game. Let an adversary A be a p.p.t. Turing Machine that has access
to the set of all user’s public keys PK, the bank’s public key pkB and
Par. A can play as many times as he wants with the oracles: Create,
Corrupt, Suppl, Withd&Suppl, Spd, Spd&Rcv, Rcv and CreditAccount.

Let qW denote the number of successful queries to the oracle Suppl.
Let qR denote the number of successful queries to the oracle Spd. Let qS
be the number of successful queries to the oracle Rcv. The adversary A
wins the game if, at any time during the game, we have qW + qR < qS .

Identification of double-spenders. No collection of users can double-
spend a coin twice without revealing one of their identities.

Game. Let an adversary A be a p.p.t. Turing Machine that has access
to the PK global variable, the bank’s public key pkB and Par. A can play
as many times as he wants with the oracles: Create, Corrupt, Suppl,
Withd&Suppl, Spd, Spd&Rcv, Rcv and CreditAccount.
A wins the game if, at any time of the game, the oracle CreditAccount

outputs (⊥2, Id, π, π
′) and the output of the oracle Identify on inputs

(Id, π, π′) is not a public key related to a secret key ⊥ in SK.

Exculpability. The bank, even when cooperating with any collection of
malicious users cannot falsely accuse users from having double-spent a
coin.

Game. Let an adversary A be a p.p.t. Turing Machine that has access
to the PK global variable, the bank’s key pair (pkB, skB) and Par. A
can play as many times as he wants with the oracles: Create, Corrupt,
Withd, Spd, Spd&Rcv, Rcv and Depo. At any time of the game, A outputs
two spends (Id1, π1) and (Id2, π2). A wins the game if the outputs of the
algorithm Identify on inputs (Id1, π1, π2) is a public key pk such that
the related secret key in SK is not ⊥ together with a valid proof ΠG, and
the output of the algorithm VerifyGuilt on inputs (pk,ΠG) is 1.

3 Anonymity Properties in Transferable E-cash

In this section, we focus on security properties related to anonymity,
remembering usual ones and introducing our two new ones.
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3.1 Overview

The Weak Anonymity (WA) and the Strong Anonymity (SA) properties
are classical properties. Informally speaking,

– an e-cash scheme fulfils the WA property if an adversary cannot link
a spending to a withdrawal. However, the adversary may know if two
spends are done by the same user or not.

– An e-cash scheme fulfils the SA property if it fulfils the WA property
and if an adversary is not able to decide if two spends are done by the
same user or not. However, the adversary may recognize a coin that
he has already observed during previous spends.

We introduce two new anonymity properties directly related to the
transferability property in e-cash that we call Full Anonymity (FA) and
Perfect Anonymity (PA). Informally speaking,

– an e-cash scheme fulfils the FA property if it fulfils the SA property
and if an adversary is not able to recognize a coin that he has already
observed during a spending between two honest users. However, the
adversary may be able to recognize a coin he has already owned.

– An e-cash scheme fulfils the PA property if it fulfils the FA property
and if an adversary is not able to decide whether or not he has already
owned a coin he is receiving.

3.2 Description of the Game

Before defining the game, we need to recall that a transferred cash neces-
sary grows in size [6]. This property may be exploited by the adversary A
to win the game and break the anonymity property. Indeed, Amay choose
two users that do not own coins of the same size so as to distinguish which
one is used at the end of the game.

Consequently, in the following game, we impose that the two chal-
lenged users i0 and i1 own coins of the same size and the coin used during
the final call to the Spd oracle should be one of these coins.

Game. Let an adversary A be a p.p.t. Turing Machine that has access
to the set of all user’s public keys PK.

1. A is given (skB, pkB), Par and A can play with the oracles: Create,
Corrupt, Withd, Spd, Rcv, Spd&Rcv and Depo.

2. At any time, A chooses two public keys pki0 , pki1 ∈ PK, such that:
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(a) SK[i0] 6=⊥ and SK[i1] 6=⊥;
(b) users i0 and i1 own coins of the same size;
(c) users i0 and i1 have been used only by a set of authorized oracles

that depends on the power of the adversary A (see below).
3. A bit b is secretly and randomly chosen and A plays with Spd(ib).
4. A outputs a bit b′.

3.3 Security Properties Related to Anonymity

We define four adversaries related to the four anonymity properties (WA,
SA, FA and PA) that can be used to play the game described at Sec-
tion 3.2. Indeed, the adversary is allowed to observe the transactions in-
volving the coin that will be spend at step 3 with some specific restrictions
depending on the anonymity property.

Definition 1 (Adversaries). We denote by i0 and i1 the two users cho-
sen by the adversary at Step 2 of the game described in Section 3.2.

– The adversary AWA is allowed to manipulate i0 and i1 only with the
oracles: Create, Withd and Depo.

– The adversary ASA is allowed to manipulate i0 and i1 only with the
oracles: Create, Withd, Spd, Spd&Rcv with the additional restriction
that i0 and i1 do not play the role of U2 and Depo.

– The adversary AFA is allowed to manipulate i0 and i1 only with the
oracles: Create, Withd, Spd, Spd&Rcv and Depo.

– The adversary APA is allowed to manipulate i0 and i1 with all the
oracles except the Corrupt oracle.

Definition 2 (Anonymity properties). A transferable e-cash system
fulfils the property P ∈ {WA, SA, FA, PA} if for an adversary AP playing the
game described at Section 3.2, the probability that b = b′ differs from 1/2
by a fraction that is at most negligible.

Remark 1. By construction, the anonymity properties are (exclusively)
related one to the other as follows: PA⇒ FA⇒ SA⇒WA.

4 Study of Anonymity Properties

The schemes proposed in [14, 6, 5] fulfil both the WA and the SA prop-
erties but, as far as we know, the FA property (and consequently the PA
property) is not achieved by any state of the art scheme. In this section,
we first show that the FA property can be reached by providing a generic
construction. Next, we prove that the PA property cannot be achieved.
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4.1 Achieving the Full Anonymity Property

The difference between the SA game and the FA game is that the coin
received at the challenge step by the adversary may have already been
observed by AFA during a call to the Spd&Rcv oracle, whereas this case
cannot happen during the SA game. The generic construction we propose
is built upon an SA scheme. The key idea of our construction is to modify
an SA scheme to get an FA scheme by protecting the communications of
the spending protocol using the establishment of a unilateral authenti-
cated secure channel between the receiver and the spender in order to
prevent an active adversary to recognize a coin that he has previously
seen being spent.

We assume that S is a transferable e-cash scheme that fulfils the
SA property. From S, we construct a transferable e-cash scheme S ′ that
fulfils the FA property. We re-define only the spending protocol of S and
we additionally use two building blocks: a secure symmetric encryption
scheme E = (Enc, Dec), and a unilateral authenticated key agreement
protocol KE between two users (including a key-confirmation step) secure
against an active adversary. In particular, KE is resistant to man-in-the-
middle attacks.

A user U1 spends a coin to user U2 by first playing the KE protocol.
At the end of the KE protocol, U1 and U2 share a unilateral authenticated
session key K. Next, U1 and U2 play the Spend protocol of S by encrypt-
ing all the communications using the algorithms Enc and Dec with the
common session key K.

Theorem 1. Under the assumptions that S fulfils the SA property, and
EK and E are secure, the system S ′ fulfils the FA property.

Sketch of Proof. Assume that AFA breaks the FA property by deter-
mining between users i0 and i1, which one is ib. By definition AFA is not
allowed to manipulate i0 and i1 with the oracle Rcv and thus AFA owns
the coin of the challenge only at step 3 of the game. AFA should have
seen it during the withdrawal of this coin (using the oracle With(U)) and
possibly during spends between honest users (using the oracle Spd&Rcv).

By assumption (S fulfils the SA property), AFA cannot get the serial
number of a coin involved in a withdrawal protocol. By construction of
S ′, all communications related to the spending of a coin are encrypted
with a unilateral authenticated ephemeral session key, which includes the
communications related to a call to the oracle Spd&Rcv. Thus, AFA has no
information about the identifier of the coin embedded into the spending
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(AFA may know the entry number of the coin in OC but not the serial
number), except if AFA has succeeded in breaking either the security of
KE to obtain the session key K or the security of E to decrypt the com-
munications without knowing the decryption key. �

4.2 Impossibility of the Perfect Anonymity Property

It is known that a payer with unlimited computing power can always
recognize his own money if he sees it later being spent [6], and thus the
PA property cannot be achieved by an unlimited powerful adversary. In
this section, we show that a bounded adversary APA, acting as the bank,
can also win the anonymity game, meaning that the PA property cannot
be achieved by transferable e-cash.

Attack against the PA Property. During the PA game, APA creates
users and corrupts some of them. At any time, APA owns a set of valid
coins {C0, · · · , Cl} that he got from his interactions with the oracle Spd.
APA chooses two honest users i0 and i1 such that they have no coins.

Next APA chooses two coins C0 and C1, spends coin C0 to user i0 and coin
C1 to user i1 using the oracle Rcv. Then, APA outputs i0 and i1, according
to the PA game. The challenger next chooses at random a bit b and APA

plays a Spend protocol with the oracle Spd on input the user ib. Acting as
the bank, APA then simply executes the Deposit algorithm for the coins
Cb and C0

1. If a double spending is detected, then APA outputs b′ = 0 and
he outputs b′ = 1 otherwise. Thus, APA can always succeed in guessing b.

5 Variants of the Perfect Anonymity Property

The attack described in Section 4.2 shows that the PA property cannot
be achieved. In this section, we describe the two most natural ways to
modify the PA game in order to prevent this attack. We define two distinct
properties called PA1* and PA2* and show that both properties can be
achieved. Next, we prove that there is no inclusion relation between the
FA property and PA1* (resp. PA2*).

5.1 Additional Anonymity properties

The first possibility to make impossible the attack described in Section
4.2 is to prevent the adversary from receiving the coin Cb at Step 3 of the
1 Even if this is a fraud, APA can deposit the coin C0 he has already spent.
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game described in Section 3.2. Then the coin Cb may have been manipu-
lated by the adversary before Step 3 but the adversary only observes the
spending of coin Cb between two honest users at Step 3.

Definition 3 (Adversary PA1*). The adversary APA∗1
can manipulate

the challenged users with all the oracles except the Corrupt oracle.

Game of the PA1* property. We modify the game described in Sec-
tion 3.2 as follows. The steps 1 and 2 are unchanged. In step 3, the call
to Spd(ib) is replaced by a call to Spd&Rcv(ib, i) where i is a randomly
chosen honest user.

The second possibility to avoid the attack against the PA property is
to prevent the attacker to execute the deposit. We thus separate the
power of the bank into two entities with distinct keys: BW (resp. BD) is
responsible of the withdraw (resp. the deposit) part. In the new property,
the adversary is not allowed to control BD. Moreover, the Deposit and
Identify protocols should be protected by a secret key of the bank BD.
We should prevent the adversary from being able to simulate the deposit
phase, as a user can do when this phase is based on public algorithms.

Definition 4 (Adversary PA2*). The adversary APA∗2
can manipulate

the challenged users with all the oracles except the oracles CreditAccount
and Corrupt.

Game of the PA2* property. We modify the game described in Sec-
tion 3.2 as follows. Only Step 1 is modified: Withd is replaced by Suppl,
and Depo is replaced by CreditAccount.

Remark 2. Note that the discussion on public [13] or secret [2] Deposit
and Identify is controversial in non-transferable e-cash definitions.

5.2 Studying the PA1* Property

We first show that the PA1* property can be achieved by proving that
the scheme S ′ described in Section 4.1 is PA1*.

Theorem 2. The scheme S ′ described in Section 4.1 is PA1*.

Sketch of Proof. Assume that APA∗1
breaks the PA1* property of S ′ by

determining between users i0 and i1 which one is ib. Before Step 3 of the
game, APA∗1

has observed the withdrawal of the coin of the challenge but
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cannot get the related serial number from it (S fulfils the SA property).
Moreover, APA∗1

may have owned many times the coin of the challenge
using the oracles Spd, Rcv and Spd&Rcv. But, by construction of S ′, all
communications related to the spending of a coin are encrypted with a
unilateral authenticated ephemeral session key. Thus, all communications
of the final call to the Spd&Rcv oracle are encrypted, which means that
APA∗1

cannot recognize the serial number of the spent coin embedded into
the spending, except if APA∗1

has succeeded in breaking either the security
of KE or the security of E by decrypting the communications without
knowing the decryption key. �

We then show that the previously defined anonymity properties and
PA∗1 are independent (i.e. one property does not imply the other).

Proposition 1. WA (resp. SA, resp. FA) and PA1* are independent
properties.

Proof. WA ; PA1*. The scheme proposed by Okamoto and Ohta [10, 11]
fulfils the WA property but not the PA1* one since the serial number of
a coin is not protected and it is not modified from one spend to another.

PA1* ; WA. If we apply the general construction of Section 4.1 onto
a transferable e-cash scheme that does not fulfil the WA property, we can
easily show that the new scheme fulfils PA1* but not WA.

SA ; PA1*. The schemes proposed in [14, 6, 5] fulfil the SA property
but not the PA1* one since the serial number of a coin is not protected
and it does not change from one spend to another.

PA1* ; SA. From SA⇒WA and PA1* ; WA, we have PA1* ; SA.
FA ; PA1*. See Appendix A.
PA1* ; FA. This is due to FA⇒ SA and PA1* ; SA. �

5.3 General description of a PA2* scheme

In this section, we want to prove that PA2* can be reached by a transfer-
able e-cash scheme and the efficiency of the constructed scheme is out of
the scope of this paper. The construction of a PA2* transferable e-cash
scheme is less straightforward than the PA1*’s one. Indeed, we need to
use an additional tool called metaproof system that has been introduced
in [12] by de Santis and Yung.

Metaproofs. Roughly speaking, the metaproof tool corresponds to a
NIZK (Non-Interactive Zero-Knowledge) proof of the existence of a NIZK
proof to a statement. More precisely, they provide a metaproof system
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for 3SAT and prove that their metaproof system is a bounded NIZK
proof system [1]. The metaproof system gives an indirect proof covered
by additional encryption mechanism such that the metaprover possesses
a zero-knowledge witness and does not necessary know the witness of the
proof itself. Eventually, the metaproof can be applied recursively.

Overview of our PA2* transferable e-cash scheme. A spent coin
is classically represented by at least a serial number S, a security tag T
(that permits the identification of double-spenders) and a proof that S
and T are correct. Then, a transferable spent coin should consists in at
least a serial number S, a set of security tags T = {T1, · · · , Tl} and a
proof of validity.

We first notice that, in a PA2* e-cash scheme, a coin should be trans-
ferred without revealing any information on previous spends, even for
the user that is receiving the coin. Moreover, the bank needs to retrieve
the serial number and all security tags describing the history of the coin,
which can be done by encrypting these values using the bank’s public key.

Since a user should not be able to recognize a coin previously owned,
the receiver should be able to verify the validity of the coin without being
able to retrieve neither the serial number nor any security tag. Moreover,
since the spender can next become a receiver of this coin, the spent coin
should be modified at each spend so that she cannot recognize it. We thus
need a cryptographic tool permitting someone to send the serial number,
security tags and proofs without revealing nor knowing them but proving
that they are valid, which can be done using metaproofs [12].

More precisely, if a user withdraws a coin, she spends it by computing
the serial number S of the coin and the security tag T1, plus a proof of
validity V1 that S and T1 are well-formed. If the receiver wants to spend
this coin, she computes a security tag T2, she encrypts S and T1 and she
proves that T2 is well-formed and that she knows the encryption of the
serial number S, the encryption of the first security tag T1 and a proof
of validity V1 without revealing the encrypted values nor V1, using in
particular a metaproof.

Description of our PA2* Scheme. We largely use the proposal of
transferable e-cash scheme from Canard, Gouget and Traoré [5] to de-
scribe our PA2* scheme, with the restriction that a user withdraws one
coin at a time, and not a wallet. In the following, we only give a high
level description of our scheme and we refer to [5] and [12] for details.
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Setup. Let G be a group of prime order p and g, g0 be two random gen-
erators in G. These data constitute the public parameters Par. Let H
be a cryptographic hash function. In the BKeyGen algorithm, B computes
two key pairs (skB,1, pkB,1) and (skB,2, pkB,2) of a CL signature scheme
[3] that permit it to sign coins and enroll users, respectively. During
the UKeyGen algorithm, each user Ui obtains a CL (verifiable) signature
Ci = Sign(ui, wi) associated to his public key pkUi = gui

0 and a random
data wi. Let EncB be a secure verifiable probabilistic encryption scheme
(e.g. El Gamal) to encrypt messages for the bank.

Withdrawal protocol. Following [2, 5], a coin C withdrawn at the bank is
a CL signature σ under the bank’s public key pkB,1 on the set of values
(s, ui, t, x) where ui is the user secret key, s, t and x are random values;
C = (s, (ui, t, x, σ)). The value s implicitly defines the serial number of
the coin and the value t implicitly defines the corresponding security tag
(using the Dodis-Yampolskiy Pseudo Random Function [7]).

Spending of a withdrawn coin. A user Ui, owning a coin C = (s, (ui, t, x, σ))
withdrawn from B, wants to spend a coin to a user Uj .

1. Uj computes rj = g
1

uj+dj

0 where dj represents some data related to the
transaction. Next, Uj sends rj and dj to Ui.

2. Ui computes S = gs, Ti = pkUig
rj

t+dj and a NIZK proof Vi that
– Ui knows a signature σ on s, ui, t and x,

– S = gs and Ti = pkUig
rj

t+dj = gui
0 g

rj
t+dj ,

without revealing s, t, ui, x nor σ.
3. The spent coin is represented by (S, π = (Ti, Vi, rj , dj)).

First transfer of a coin. Let us now consider the user Uj that has received
a coin (S, π = (Ti, Vi, rj , dj)) from user Ui during the above protocol. If
Uj wants to spend this coin to a user Uk, he has to proceed as follows.

1. Uk computes rk = g
1

uk+dk
0 where dk represents some data related to

the transaction. Next, Uk sends rk and dk to Uj .

2. Uj computes Tj = pkUjg
rk

uj+S+dk , dS = EncB(S), dTi = EncB(Ti) and
a NIZK proof Vj that
– Uj knows a signature Cj on uj and wj

– Tj = pkUjg
rk

uj+S+dk = gui
0 g

rk
uj+S+dk and rj = g

1
uj+dj

0 ,
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– dS and dTi are correct encryptions of the unrevealed values S and
Ti, respectively,

– there exists a NIZK proof Vi proving that S and Ti are well-formed,
using in particular rj and dj , and linked to a valid signature of the
bank (this step corresponds to a metaproof as described in [12]),

without revealing uj , S, Cj , wj , rj , dj , Ti nor Vi.
3. The spent coin is represented by (dS, π = (Tj , dTi, Vj , rk, dk)).

Second transfer of a coin. Let us now consider the user Uk that has
received a coin (dS, π = (Tj , dTi, Vj , rk, dk)) from user Uj during the above
protocol. If Uk wants to spend it to Ul, he has to proceed as follows.

1. Ul computes rl = g
1

ul+dl
0 where dl represents some data related to the

transaction. Next, Ul sends rl, dl to Uk.
2. Uk computes Tk = pkUk

g
rl

uk+dS+dl , d2S = EncB(dS), dTj = EncB(Tj),
and d2Ti = EncB(dTi) and a NIZK proof Vk that
– Uk knows a signature Ck on uk and wk

– Tk = pkUk
g

rl
uk+dS+dl = guk

0 g
rl

uk+dS+dl and rk = g
1

uk+dk
0 ,

– d2S, dTj and d2Ti are correct encryption of the unrevealed values
dS, Tj and dTi, respectively,

– there exists a NIZK proof Vj proving that dS, Tj and dTi are
well-formed, using in particular rk and dk, and linked to valid
signatures of the bank, the one from the withdrawal phase and the
one corresponding to the certificate of Uj (this step corresponds
to a metaproof as described in [12]),

without revealing uk, dS, Cj , wk, Tj , dTi nor Vj .
3. The spent coin is represented by (d2S, π = (Tk, dTj , d

2Ti, Vk, rl, dl)).

The next spendings of this coin work similarly and are not described in
this paper.

Deposit and Identify. During a deposit, U sends the received coin (e.g. of
the form (d2S, π = (Tk, dTj , d

2Ti, Vk, rl, d))) to B. Then B first checks if
this coin is fresh by decrypting d2S until obtaining the initial S and by
testing if S already belongs to L. If this is not the case, then everything is
ok. Otherwise, there is a double-spending and B has two deposited coins.
Then, B compares the first spending of both coins. If they are identical,
then B goes to the second one an so on until two spends at the same level
are different (this case always happens). B finally retrieves the identity
of the cheater by first decrypting the related values T and T ′ and next
using the compact e-cash technique to retrieve the cheater public key.
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5.4 Achieving the PA2* Property

Note that our PA2* scheme is in accordance with the result of [6] which
says that an unbounded adversary can always recognize his own coin
during the game if it sees it later in a payment since such adversary is
capable of decrypting values to retrieve the spender’s identity.

Theorem 3. Under the security of the used encryption scheme (e.g.
El Gamal), the security of NIZK proofs and the security of the Dodis-
Yampolskiy PRF, the proposed scheme fulfils the PA2* property.

Sketch of Proof. Assume that APA∗2
succeeds in breaking the PA2*

property of the scheme described at Section 5.3. That means that APA∗2
is

able to decide, between two honest users i0 and i1 chosen by APA∗2
, which

user is the spender ib during a call to the oracle Spd(ib). Note that, there
is no restriction on the list of authorized oracles for such adversary.

The best strategy for APA∗2
is to choose the users i0 and i1 such that he

has previously manipulated all the coins owned by these users. Then APA∗2
has to recognize the coin C = (diS, π = (Tl, dTk, · · · , diTj , Vl, rm, dm))
sent by ib that he has previously owned. Consequently, APA∗2

knows some
values that has been used to compute this coin (such as e.g. di0Tj0). When
receiving a coin, APA∗2

cannot learn anything from:

– the encrypted serial number diS under the security of the probabilistic
encryption scheme (even if he knows the value that is encrypted),

– the encrypted security tags dTk, · · · , diTj under the security of the
encryption scheme (even if he knows some encrypted values),

– the security tag Tl of the spender under the security of the Dodis-
Yampolskiy PRF (see [7, 5] for details),

– the values rm and dm that comes from APA∗2
himself,

– the proof Vl by definition of a NIZK proof. In particular, see the result
on metaproofs [12] and on usual zero-knowledge proofs of knowledge
based on the discrete logarithms [8, 4].

Consequently, even if APA∗2
has already seen the spent coin, he cannot

recognize it. Thus, APA∗2
cannot win the PA2* game and our construction

is PA2*, which concludes the proof. �
We finally show that there is no relation between previously defined

anonymity properties and the PA∗2 one.

Proposition 2. PA2* and WA (resp. SA, resp. FA, resp. PA1*) are in-
dependent properties.
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Sketch of Proof. WA ; PA2*. The scheme given in [10, 11] fulfils the
WA property but not the PA2* property since the serial number of a coin
is not protected and it does not change from one spend to another.

PA2* ; WA. See appendix B.
PA2* ; SA. This is due to SA ⇒ WA and PA2* ; WA.
SA ; PA2*. The schemes proposed in [14, 6, 5] fulfil the SA prop-

erty but not the PA2* property since the serial number of a coin is not
protected and it does not change from one spend to another.

PA2* ; FA. This comes from FA ⇒ SA and PA2* ; SA.
FA ; PA2*. The scheme proposed in Section 4.1 fulfils the FA prop-

erty but not the PA2* property.
PA1* ; PA2*. The generic construction given in Section 4.1 fulfils

PA1* but not PA2* property (for obvious reasons).
PA2* ; PA1*. The PA2* scheme proposed in Section 5.3 does not

fulfil the PA1* property since the adversary being the bank in the PA1*
game can decrypt all encrypted data of all spends. �

6 Conclusion

In this paper, we provide the first study-in-depth of anonymity properties
in transferable e-cash by introducing the full anonymity (FA) and perfect
anonymity (PA). We show that the FA property can be reached by pro-
viding a generic construction and we prove that the PA cannot. We then
define two restricted PA properties called PA1* and PA2* and we show
that both restricted properties can be reached. Finally, we show that FA,
PA1* and PA2* are three separate properties. Thus, an anonymous trans-
ferable e-cash scheme should ideally fulfils these three properties, which
is the case (obviously inefficiently) if we apply the trick of Section 4.1 to
the PA2* scheme of Section 5.3. Note that all our results can easily be
extended to wallets by using the compact e-cash techniques [2].
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A Proof of Proposition 1: FA ; PA1*

We first describe a toy scheme T S and next we prove that T S fulfils the
FA property but it does not fulfil the PA1* property.

Description of the Toy Scheme T S. We assume that S is a transferable
e-cash scheme that fulfils the SA property (e.g. [14, 6, 5]). We need to re-
define only the spending protocol of S. We additionally use as building
blocks a secure symmetric encryption scheme E = (Enc, Dec) and a uni-
lateral authenticated group key agreement (GKA) scheme which uses e.g.
the proposal of [9] where g is a public element. Each user has a signature
key pair together with a valid certificate. In particular, this permits us
to make the GKA scheme resistant to man-in-the-middle attacks. If U1

wants to spend a withdrawn coin to U2, he has to proceed as follows.

– U1 chooses at random a value K1 and sends gK1 to U2. User U2 chooses
at random a value K2, computes gK2 , signs gK1‖gK2 and sends gK2
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and the signature to U1. Both can securely and secretly compute K =
gK1K2 and execute a key-confirmation protocol.

– U1 and U2 play together the Spend protocol of S by encrypting com-
munications using the encryption algorithm Enc with the common
secret key K. Both U1 and U2 can decrypt communications using the
decryption algorithm Dec with the common secret key K.

If U2 wants to spend a received coin to U3, the protocol is as follows.

– U2 sends gK = ggK1K2 to U3. User U3 chooses at random a value K3,
computes gK3 , signs gK3‖gK and sends gK3 and the signature to U2.
Both can compute K ′ = gKK3 = ggK1K2K3 , as in [9], and execute a
key-confirmation protocol.

– U2 and U3 play together the Spend protocol of S using Enc and the
session key K ′, as for the spending of a withdrawn coin

Note that the adversary playing the role of U2 cannot take any advan-
tage in not sending the correct value gK = ggK1K2 for obvious reasons.

Proposition 3. Under the assumptions that S fulfils the SA property,
and E is secure, the T S system fulfils the FA property.

Sketch of Proof. Assume that AFA succeeds in breaking the FA property
of T S and thus decide, between i0 and i1, which user is the user ib from
which AFA receives the coin of the challenge.

Note that the oracle Rcv is not allowed for the manipulation of users
i0 and i1. Thus, at Step 2 of the Game, AFA chooses users i0 and i1 such
that all the coins owned by users i0 and i1 have never been owned by AFA.
Then, AFA owns the coin of the challenge for the first time at step 4.

Before Step 3 of the game,AFA has observed the withdrawal of the coin
of the challenge (using the oracle With(U)) and AFA may have observed
many times a spending between two honest users involving the coin of
the challenge, using the oracles Spd&Rcv.

By assumption (S fulfils the SA property), AFA cannot get the serial
number of a coin involved in a withdrawal protocol. By construction of
T S, all communications related to the spending of a coin are encrypted
with an anonymous ephemeral session key. Thus, all communications re-
lated to a call to the oracle Spd&Rcv are encrypted. That means that AFA

has no information about the identifier of the coin embedded into the
spending (AFA may know the entry number of the coin in OC but not the
serial number), except if AFA has succeeded in breaking either the secu-
rity of the unilateral authenticated group key agreement or the security
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of E to decrypt the communications without knowing the decryption key
which is impossible by assumption. �

Proposition 4. T S does not fulfil the PA1* property.

Sketch of Proof. T S does not fulfil the PA1* property (by construc-
tion). Indeed, APA∗1

can always choose one of his coins and give it to i0
that has no coin. Since APA∗1

has received the coin, he necessarily knows
the session key K. During the game, APA∗1

chooses i0 as defined previously
and i1 at random. Then, the oracle Spd&Rcv(ib, i), where i is a random
honest user, is called. The underlying Spend protocol uses a session key
K ′ from a key K̃ introduced by i0 or i1 and a random key K3 introduced
by the receiver, as in the spending protocol. Then APA∗1

can easily check
if the key K̃ corresponds or not to the key K he knows. If this is the
case, APA∗1

outputs 0 and he outputs 1 otherwise and wins the game with
a probability of success equal to 1, which concludes the proof. �

B Proof of Proposition 2: PA2* ; WA

In order to prove that PA2* ; WA, we describe a toy scheme and we
prove that it fulfils the PA2* property but not the WA one.

Withdrawal protocol. The user U gets from the bank B a signature σ on
the serial number s of the coin. Note that the serial number is not hidden
to the bank that consequently knows s and σ.

Spending a withdrawn coin. The user U1 spends the coin (s, σ) to the
user U2 by encrypting s and the signature σ to obtain E and producing a
NIZK proof that the encrypted σ is a signature of the encrypted value s.

Spending a received coin. U2 spends a received coin (E,U) to U3 by using
the metaproof technique [12] to produce a NIZK proof V that there exists
a NIZK proof U of validity of the spent coin. This step can be done many
times so that the coin can be spent again and again.

This scheme is straightforwardly PA2* but does not achieve the WA
property since the bank can decrypt all spends to retrieve s and thus
make the link with the initial withdrawal.
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