
Sanitizable Signatures
with Several Signers and Sanitizers

Sébastien Canard1, Amandine Jambert2, and Roch Lescuyer1,3

1 Orange Labs, Applied Crypto Group, Caen, France
2 CNIL, Paris, France
3 ENS, Paris, France

Abstract. Sanitizable signatures allow a signer of a message to give one
specific receiver, called a sanitizer, the power to modify some designated
parts of the signed message. Most of the existing constructions consider
one single signer giving such a possibility to one single sanitizer. In this
paper, we formalize the concept with n signers and m sanitizers, taking
into account recent models (for 1 signer and 1 sanitizer) on the subject.
We next give a generic construction based on the use of both group
signatures and a new cryptographic building block, called a trapdoor or
proof, that may be of independent interest.

Keywords: Sanitizable signatures, anonymity, trapdoor or proof.

1 Introduction

Cryptographic research provides today a large choice of tools to secure our net-
works and services. Besides authentication and encryption, it exists several ways
to lighten or slightly modify the main cryptographic tools. Regarding signature
schemes, it is for example possible to blind the identity of the signer (using e.g.
group signatures) or to add properties on the resulting message-signature pair.

Among those variants, the idea of a signature on a document which can be
further modified by a designated “sanitizer”, without interaction with the signer,
has been introduced in [19]. The current definition, introduced in [1] under the
named of sanitizable signatures, allows the signer to control which parts of the
message can be modified by the chosen sanitizer. The security properties sketched
in [1] have been formalized in [7] for the case of one single signer giving the mod-
ification power to one single sanitizer1: such a scheme should be transparent
(only the signer and the sanitizer are able to distinguish an original signature
from a sanitized one), immutable (the sanitizer is unable to modify non admis-
sible blocks of a signed message), signer-accountable (a signer can not force a
judge to accuse a sanitizer) and sanitizer-accountable (a sanitizer can not force
a judge to accuse a signer). The notion of unlinkability (infeasibility to identify
message-signature pairs from the same source) has later been proposed in [8].
Some extensions [18,9] have also been described, allowing the signer to better
control the modifications the sanitizer can do.
1 Even if several sanitizers could exist in the system.

A. Mitrokotsa and S. Vaudenay (Eds.): AFRICACRYPT 2012, LNCS 7374, pp. 35–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

36 S. Canard, A. Jambert, and R. Lescuyer

It currently exists several sanitizable signature constructions in the litera-
ture [1,10,7,9,8,17] which consider one single signer allowing one single sanitizer
to sanitize a given message-signature pair. But nobody has really taken into
account the case of multiple signers and sanitizers in a unique system. The clos-
est solutions are either trapdoor solutions [10,21] which allows signer to chose
afterwards one sanitizer in a group or the recent work in [8] about unlinkable
schemes which can be extended to the case of “one signer and m sanitizers”.

Regarding concrete applications, sanitizable signatures with one signer and
one sanitizer may be useful in the context of Digital Right Management [10]
(signer of a license vs. modifier of a given license), database applications [1]
(commercial vendor vs. database administrator) or medical ones [1] but the one-
one case does not cover all use cases. The secure routing application proposed
in [1] should e.g. use a group of n entities acting as both signers and sanitizers.
Sanitizable signatures can also be used e.g. to protect the privacy of customers
in a billing system where the service provider does not obtain the identity of the
customer and the billing provider does not know the provided service.

In this paper, we propose the first complete model for sanitizable signatures
with n signers and m sanitizers. Our model includes the Brzuska et al. [7,8] for
1 signer and 1 sanitizer and considers collusion of adversary.

Ideas behind our model. A signer can choose several designated sanitiz-
ers for a given message and each of them is able to modify the resulting mes-
sage/signature pair. We thus redefine accordingly the notions of accountabil-
ity and immutability and introduce several notions of transparency: the no-
transparency where anybody can distinguish a signed message from a sanitized
one, the group transparency where only signers can make such a distinction and
the full transparency where this can only be done by the true signer, the true
sanitizer and a designated authority.

As there are several signers and sanitizers, we study the case where the signer
(resp. the sanitizer) is anonymous within the group of signers (resp. sanitizers).
Similarly to the transparency, we also introduce the concept of group anonymity
where a signer (resp. sanitizer) is anonymous for people who are not in the group
of signers (resp. sanitizers). To be complete, we also treat the anonymity revo-
cation by some designated authorities and study the notion of traceability and
non-frameability from the group signature world [3,4].

Idea of our construction. Our main (n, m) multi-players sanitizable sig-
nature construction is based on the work of Brzuska et al. [8], using group sig-
natures [3,5,4,13]. More precisely, we base our new solution on a new crypto-
graphic building block that may be of independent interest: trapdoor or proof.
Zero-knowledge proofs of knowledge allow one prover to prove to one verifier that
she knows some secrets verifying some public relations. An or proof enables to
prove e.g. that the known secret is the discrete logarithm of either y in base g or
of z in base h. We introduce the concept, and give a practical construction, for a

Sanitizable Signatures with Several Signers and Sanitizers 37

trapdoor or proof where a given authority can reveal which discrete logarithm is
known. Independently, this tool can be used to design electronic voting systems.

The paper is organized as follows. Our model for multi-players sanitizable
signature is described in Section 2 (for procedures) and in Section 3 (for security).
Section 4 is dedicated to useful tools and Section 5 to our new trapdoor or proof.
Our main multi-players sanitizable signature scheme is described in Section 6.

2 Multi-players Sanitizable Signatures

Our aim is to propose a model where one signer (among n) can choose a set of
sanitizers (among m) such that any sanitizer of the chosen subset is able to san-
itize the output message-signature pair. Moreover we want to be consistent with
the initial model from Brzuska et al. where one signer chooses one sanitizer [7].
We thus keep traditional procedures (Sign, Sanitize, Verify, SigOpen and
Judge) and security properties: immutability, signer and sanitizer accountabil-
ities and transparency (see below). We also add the unlinkability property [8].

Adding anonymity. As we now have a group of signers and sanitizers, we
can handle these groups in different ways. One possibility is to publicly know
who is the initial signer (resp. sanitizer) of a given message-signature pair (no-
anonymity). We can also take the example of group signatures by considering
that the signer (resp. sanitizer) can be anonymous, except for a designated au-
thority (full anonymity). In some cases, the other signers (resp. sanitizers) may
need to identify the signer (resp. the sanitizer) of a given message, while this is
still not feasible for other parties (group-anonymity).

We thus add a full opener Ofull who is able to determine (during the
FullOpen procedure) the real producer of a given message-signature pair. Sim-
ilarly, the origin opener Oori is able to retrieve (during the FindOri algorithm)
the signer who is at the origin of a given message-signature pair.

The notion of anonymity and the possibility to revoke this property neces-
sary lead to the notion of traceability (the identity of an anonymous signer or
an anonymous sanitizer can always be retrieved if needed) and non-frameability
(the infeasibility to produce a wrong opening).

The case of the transparency. The notion of transparency says [7] that
only the signer and the sanitizer are able to distinguish an original signature
from a sanitized one. For this purpose, the signer in [7] has access to a SigOpen

procedure which permits her to prove that a given message/signature pair is an
original or a sanitized one.

As we consider the case of a group, we introduce, as for anonymity, the notion
of group anonymity where the the SigOpen procedure is extended to any signer
in the group (not only the real signer).

We also keep the traditional notion (called full transparency) where only the
true original signer, the true sanitizer (if relevant), and a new introduced authority
called the algorithm opener Oalg, are able to prove that one message-signature

38 S. Canard, A. Jambert, and R. Lescuyer

pair is an original or not. For the latter, we introduce the AlgOpen procedure
which can be executed by Oalg. Note that the true signer is always able to make
such distinction but she is not necessarily able to prove it.

Remark 1. We do not need to add an unforgeability property since it is implied
by the accountability, traceability and non-frameability. In fact, from Proposition
4.2 of [7], we obtain that accountabilities imply unforgeability and the given proof
still work in our case. Moreover (cf. Appendix A of [4]), the group signature’s
unforgeability follows from traceability plus non-frameability.

General Definition. A multi-players sanitizable signature scheme involves a
set of signers, a set of sanitizers, an issuer I that may be divided into Isig and
Isan and an opener O that may be divided into Ofull, Oalg, and Oori.

Given a message m of length � and divided into t blocks, ADM is defined by
the signer as (i) the length �i of each block mi (such that � =

∑t
i=1 �i) and (ii)

the index of the block which will be modifiable by the sanitizer, i.e. the subset
T of [1, t] such that for all i ∈ T , mi is modifiable. By misuse of notation, we
say that i ∈ ADM if i ∈ T . If two messages m0 and m1 are defined as having
the same admissible parts ADM, we note that ADM(m0, m1) = 1. On input a
message m and the variable ADM, the sanitizer define the modifications MOD
as the set of all the (i, m′

i) such that she is able to replace the i-th block of m by
m′

i. We say that MOD matches ADM if ∀i ∈ MOD, i ∈ ADM.

Definition 1 (Multi-players sanitizable signature scheme). Let λ be a
security parameter. A (n, m)-multi-players sanitizable signature scheme Π is
composed of the following eleven algorithms.

Setup(1λ) outputs the public key gpk of the system, the secret key isk :=
(isksig, isksan) of some issuers and, in some cases, an additional opening
secret key denoted by osk := (oskfull, oskalg, oskori).

SigKG(1n, 1λ, isksig) and SanKG(1m, 1λ, isksan) take as input the issuer key
isksig (resp. isksan), the number n (resp. m) of signers (resp. of sanitizers)
and λ. They output two vectors of keys (sksig,pksig) (resp. (sksan,pksan)).
From now on, the whole public key (gpk,pksig,pksan) is denoted PK.

Sign(m, sksig[i], p̃ksan, ADM, PK) enables the signer i to sign a message m for
authorized sanitizers p̃ksan ⊆ pksan according to ADM as defined above. It
outputs a signature σ on m. By convention σ contains ADM and p̃ksan. Note
that σ also contains the way for authorized sanitizers to sanitize m.

Sanitize(m, σ, sksan[j], MOD, PK) is carried out by the sanitizer j to sanitize
a message-signature pair (m, σ). The modifications MOD describe the new
message m′ as defined above. This algorithm outputs a new signature σ′ and
the modified message m′ or ⊥ in case of error (for example, j is not able to
sanitize this message).

Verify(m, σ, PK) allows to verify the signature σ (sanitized or not) on the
message m. It outputs 1 if the signature is correct and 0 if it is not.

Sanitizable Signatures with Several Signers and Sanitizers 39

FullOpen(m, σ, oskfull, PK) enables the opener Ofull to find the identity of
the producer of the given message. It outputs the string full, an identity
Ifull which is either (sig, ifull) or (san, jfull), and a proof τfull of this claim.
In case Ifull = 0, it is claiming that no one produced σ.

AlgOpen(m, σ, oskalg, PK) enables the opener Oalg to find whether the couple
(m, σ) is an original or a sanitized couple. It outputs the string alg, next
either Ialg = sig (original signature) or Ialg = san (sanitized signature),
and a proof τalg of this claim. In case Ialg = 0, the result is that the opener
Oalg cannot conclude.

FindOri(m, σ, oskori, PK) enables the opener Oori to find the original signer
of the given message. It outputs the string ori, the identity Iori = (sig, iori)
of the original signer and a proof τori of this claim. In case Iori = 0, it is
claiming that no signer is at the origin of σ. Note that iori is not necessarily
the identity of the actor having produced the signature σ, since this one may
have been sanitized after the original signature from iori.

SigOpen(m, σ, (ori, Iori, τori), sksig [̃i], PK, DB) enables the signer ĩ to be con-
vinced, using an entry (ori, Iori, τori) (with Iori := (sig, iori)) which could
have been produced by the FindOri algorithm, that the signer iori is the
originator of the given message. The signer ĩ may use a set DB of couples
(mk, σk) and proves that the given message-signature pair (m, σ) is or is not a
sanitized pair. It outputs a triple containing the string sig, either Isig = Iori
if (m, σ) a true signature or (san, 0) if (m, σ) was sanitized, and a proof τsig
(including τori). It outputs Isig = 0 if the signer ĩ can not conclude.

Judge(m, σ, gpk, (s, Is, τs), PK) is a public algorithm which aims at deciding
the origin of a given message-signature pair (m, σ). According to the string
s ∈ {full, alg, ori, sig}, it outputs 1 if the predicate guessed in τs is exact
and 0 otherwise.

The correctness property states that all of them should be correct, from the
verification to the different opening algorithms.

3 Security Requirements

We now give the security definitions a multi-players sanitizable signature scheme
should satisfy. Our work is based on those from [7] and [3].

Oracles. The security properties will be displayed using experiments in which
the adversary’s attacks are modelled by having access to some oracles. In the
following, CU denotes the set of corrupted users (as a signer or a sanitizer).

− setup(·, ·, ·): this oracle corresponds to the generation of the different keys
and parameters. It takes as input the parameters λ, n, m ∈ N and executes
the procedures Setup(·), SigKG(·, ·, ·) and SanKG(·, ·, ·) and the set PK is
given on output, while SK = {isk, osk, sksig, sksan} is kept secret (for now).

40 S. Canard, A. Jambert, and R. Lescuyer

− corrupt(·, ·, ·): the adversary can corrupts a signer or a sanitizer. This oracle
takes as input three elements: the first one a ∈ {sig, san} says whether the
corrupted player is a signer or a sanitizer, the second argument k ∈ N gives
the identity of the corresponding signer (k ∈ [1, n]) or sanitizer (k ∈ [1, m])
and the third one corresponds to a public key pk. The couple (a, k) is added
to the set CU and the oracle sets (pksig[k], sksig[k]) = (pk,⊥) if a = sig
(or (pksan[k], sksan[k]) = (pk,⊥) if a = san). An adversary having access
to no corruption oracle is denoted A(0), an adversary only having access to
corrupt(sig, ·, ·) (resp. corrupt(san, ·, ·)) is denoted A(si) (resp. A(sa)), while an
adversary having access to both is denoted by A(∗).

− sign(·, ·, ·), sanitize(·, ·, ·, ·), fullopen(·, ·), algopen(·, ·), findorigin(·, ·) and finally
sigopen(·, ·, ·, ·): these oracles are related to the procedures given in Defini-
tion 1 (without the non necessary public parameters). The set of queries and
answers to and from the sign (resp. the sanitize) oracle is denoted Σsig (resp.
Σsan) and is composed of elements of the form (mk, ik, p̃ksan,k, ADMk, σk)
(resp. (mk, σk, jk, MODk, m′

k, σ′
k)).

Adversaries. For each property, there are two types of adversary.

1. A generator adversary Agen outputs something that will pass some given
criteria. The experiment outputs 1 if all criteria on the adversary’s output
are verified. For any adversary Agen against a property prop and any param-
eters λ, n, m ∈ N, the success probability of Agen is the probability that the
experiment outputs 1. We say that the scheme verifies prop if this success is
negligible (as a function of λ, n, m) for any polynomial-time Agen.

2. A choose-then-guess adversary A = (Ach,Agu) is divided into two phases:
Ach for the “choose” phase or Agu for the “guess” one. For the experiments,
a challenge bit b ∈ {0, 1} is set and for any adversary A against a property
prop and any parameters λ, n, m ∈ N, the advantage of A is Pr

[
Expprop-1

Π,A =

1
]
− Pr

[
Expprop-0

Π,A = 1
]
. We next say that the whole scheme verifies the

property prop if this advantage is negligible for any polynomial-time A.

Immutability. The immutability says that it is not feasible, for an adversary
controlling all the sanitizers, to make a modification on a signed message by a
non-authorized sanitizer, to modify a signed message in a non admissible part,
or to modify ADM (see [17]). We allow the adversary to corrupt signers, but the
output pair should not originally come from a corrupted signer.

Expimm
Π,A(λ, n, m):

– (PK, SK)← setup(1λ);
– (m∗, σ∗)← A(*)

gen(PK, isksan); // let (p̃k
∗
san, ADM∗) ∈ σ∗

– (ori, Iori, τori)← FindOri(m∗, σ∗, oskori, PK)
– if

[
Verify(m∗, σ∗,PK) = 0

]
or

[
Iori = (sig, iori) ∈ CU

]
, return 0;

– if ∀(mk, iori, p̃ksan,k, ADMk, ·) ∈ Σsig,
[
p̃ksan,k �= p̃k

∗
san

]
or

[
ADMk �= ADM∗]

or
[
∃� ∈ [1, tk] s.t. mk[�] �= m∗[�] and � �∈ ADMk

]
, then return 1.

Sanitizable Signatures with Several Signers and Sanitizers 41

Sanitizer accountability. The adversary controls all the sanitizers and out-
puts a (m∗, σ∗) pair which will be attributed to a signer, while this is not the
case. The first possibility for the adversary is to output a valid tuple (alg, sig,
τalg) accepted by the judge. The second possibility is to make use of an honest
signer i∗ of its choice, such that when i∗ executes the SigOpen algorithm, the
output is (sig, Isig) with Isig being an honest signer. Since the adversary is given
the ability to corrupt signers, we should be convinced that σ∗ neither comes
from a corrupted signer nor from the sign oracle.

Expsan-acc
Π,A (λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗, (I∗alg, τ∗

alg), I∗ := (sig, i∗))← A(*)
gen(PK, osk, isksan); // let p̃k

∗
san ∈ σ∗

– (ori, Iori, τori)← FindOri(m∗, σ∗, oskori, PK);
– if

[
Verify(m∗, σ∗,PK) = 0

]
or

[
I∗ ∈ CU

]
or

[
Iori = (sig, iori) ∈ CU

]
or

[
∃(mk, ik, p̃ksan,k, ·, σk) ∈ Σsig s.t. (ik, mk, p̃ksan,k) = (iori, m

∗, p̃k
∗
san)

]
, return

0;
– (sig, Isig, τsig)← SigOpen(m∗, σ∗, (ori, Iori, τori), sksig[i∗], PK, DB); where
DB := {(mk, σk) | ∀(mk, ik, ·, ·, σk) ∈ Σsig s.t. ik = iori}
– if

[(
I∗alg = sig∧Judge(m∗, σ∗, (alg, I∗alg, τ∗

alg, PK) = 1
)

or
(
I∗ /∈ CU∧Iori =

Isig ∧ Judge(m∗, σ∗, (sig, Isig, τsig), PK) = 1
)]

, then return 1.

Signer accountability. The adversary controls all the signers and outputs a
(m∗, σ∗) pair which will be attributed to a sanitizer, while this is not the case.
The first possibility is to output a judge-accepted tuple (alg, san, τalg). The
second possibility is to produce a judge-accepted proof (sig, (san, 0), τsig), which
may be output by the SigOpen procedure. Again, we should be convinced that
σ∗ neither comes from a corrupted sanitizer/signer nor from the sanitize oracle.

Expsig-acc
Π,A (λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗, (I∗BOn, τ∗))← A(*)

gen(PK, osk, isksig);
– (full, Ifull, τfull)← FullOpen(m∗, σ∗, oskfull, PK);
– if

[
Verify(m∗, σ∗, PK) = 0

]
or

[
Ifull = (san, j∗) ∈ CU

]
or

[
∃(·, σk, ·, ·, m′

k, ·) ∈ Σsan s.t. (pksan[j
∗] ∈ p̃ksan,k or m′

k = m∗)
]
, return 0;

– if
[(

I∗ = san ∧ Judge(m∗, σ∗, (alg, I∗, τ∗), PK) = 1
)

or(
[I∗ = (san, 0) ∧ Judge(m∗, σ∗, (sig, I∗, τ∗), PK) = 1

)]
, then return 1.

Transparency. The aim of the adversary is here to decide whether a given
message-signature is a sanitized one or not. In the full transparency case, she
has access to the signer corruption oracle, while she does not in the group
transparency case. The existence of SigOpen obviously implies that the full

42 S. Canard, A. Jambert, and R. Lescuyer

transparency can not be reached. Therefore, to design a fully transparent multi-
players sanitizable signature scheme, the SigOpen procedure must be restricted
to the case ĩ = iori.

Exptran-b
Π,A (λ, n, m) // b ∈ {0, 1} ; A = A(∗) if full and A = A(sa) if group:

– (PK, SK)← setup(1λ, n, m);
– (m∗, ADM∗, MOD∗, i∗, j∗, p̃k

∗
san, st)← A

(∗)
ch (PK);

– if i∗ ∈ CU or j∗ ∈ CU , return ⊥;
– σ∗ ← Sign(m∗, sksig[i∗], p̃k

∗
san, ADM∗, PK);

– (m′∗, σ′∗
0)← Sanitize(m∗, σ∗, sksan[j∗], MOD∗, PK);

– if b = 1, then σ′∗
1 ← Sign(m′∗, sksig[i∗], p̃k

∗
san, ADM∗, PK);

– b∗ ← A(∗)
gu (m′∗, σ′∗

b , st)
– if (m′∗, σ′∗

b) was queried to sigopen, return ⊥, else return b∗.

Unlinkability. The aim of the adversary is here to choose two messages that
become identical once sanitized and decide which one has been sanitized. The
adversary has access to a left-or-right oracle which executes the sanitization
according to a random bit the adversary must guess.

Expunlink-b
Π,A (λ, n, m) // b ∈ {0, 1}:

– (PK, SK)← setup(1λ, n, m);
– (m∗

0, m
∗
1, σ

∗
0 , σ∗

1 , MOD∗
0, MOD∗

1, j
∗
0 , j∗1 , st)← A(∗)

ch (PK);
– (m′∗, σ′∗)← Sanitize(m∗

b , σ
∗
b , sksan[j∗b], MOD∗

b , PK);
– (ori, Iori, τori)← FindOri(m′∗, σ′∗

b , oskori, PK);
– if

[
Iori = 0

]
or

[
Iori = (sig, iori) and iori ∈ CU

]
or

[
j0 ∈ CU

]
or

[
j1 ∈ CU

]

or
[
Judge(m′∗, σ′∗

b , (ori, Iori, τori), PK) = 0
]
, return ⊥;

– b∗ ← A(∗)
gu (m′∗, σ′∗

b , st)
– if (m′∗, σ′∗) was queried to sigopen, return ⊥, else return b∗.

Traceability. The traceability says that the opening should always conclude.
The adversary wins if she is able to output a message-signature pair such that
the opener (Ofull, Oori) outputs ⊥ or is unable to produce a correct proof τ of
its claim.

Exptrac
Π,A(λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗)← A(∗)

gen(PK, osk);
– (full, Ifull, τfull)← FullOpen(m∗, σ∗, oskfull, PK);
– (ori, Iori, τori)← FindOri(m∗, σ∗, oskori, PK);
– if Verify(m∗, σ∗, PK) = 0, return 0;
– if

[
Judge(m∗, σ∗, (s, Is, τs), PK) = 0

]
or

[
Is = 0

]
, with s ∈ {full,ori},

then return 1.

Sanitizable Signatures with Several Signers and Sanitizers 43

Sanitizer anonymity. The adversary here controls all the signers, chooses two
sanitizers (j∗0 , j∗1), a pair (m∗, σ∗) and some MOD∗ of her choice. Then the j∗b -th
sanitizer sanitizes the signature (for a uniformly chosen bit b) and the adversary
aims at guessing b. In the full anonymity case, she has access to the sanitizer
corruption oracle, while this is not the case in the group anonymity. Note that
the “no-” and “group-” anonymity can only be defined if the signer is also viewed
as a sanitizer (the contrary not being true) because of the transparency property.

Expsan-ano-b
Π,A (λ, n, m) // b ∈ {0, 1}; A = A(∗) if full and A = A(sa) if group:

– (PK, SK)← setup(1λ, n, m);
– (j∗0 , j∗1 , m∗, σ∗, MOD∗, st∗)← A(si)

ch (PK, isksig);
– (m′∗, σ′∗)← Sanitize(m∗, σ∗, sksan[j∗b], MOD∗, PK);
– if

[
Verify(m∗, σ∗, PK) = 0

]
or

[
j∗0 ∈ CU

]
or

[
j∗1 ∈ CU

]
, return ⊥;

– b∗ ← A(si)
gu (m′∗, σ′∗, st)];

– if (m′∗, σ′∗) was queried to fullopen, return ⊥, else return b∗.

Signer anonymity. The adversary now controls all the sanitizers and aims
at distinguish between two signers (i∗0, i

∗
1) of her choice, which one has signed

a message m∗ according to a chosen ADM∗. We next make the same division
as for the sanitizer anonymity part, regarding the corruption possibility for the
adversary.

Expsig-ano-b
Π,A (λ, n, m) // b ∈ {0, 1}; A = A(∗) if full and A = A(sa) if group:

– (PK, SK)← setup(1λ, n, m);
– (i∗0, i

∗
1, m

∗, p̃k
∗
san, ADM∗, st)← A(sa)

ch (PK, isksan);
– if

[
i∗0 ∈ CU

]
or

[
i∗1 ∈ CU

]
, return ⊥;

– σ∗ ← Sign(m∗, sksig[i∗b], p̃k
∗
san, ADM∗, PK);

– b∗ ← A(sa)
gu (m∗, σ∗, st);

– if (m∗, σ∗) was queried to fullopen, return ⊥, else return b∗.

Non-Frameability. The non-frameability property argues that it is not pos-
sible for an adversary, even being the openers, to falsely accuse an honest user
(signer or sanitizer) from having produced a valid signature. This property is
different from the accountability ones since it takes into account the case where
some corrupted signers (resp. sanitizers) try to accuse an honest signer (resp. san-
itizer). Moreover, we study the case of a false accusation during the FullOpen

and FindOri procedures. The adversary does not control all users but can cor-
rupt them, as it wants. It finally outputs a valid (m∗, σ∗) pair and a (i∗, τ∗) pair
which could have been output by the FullOpen (resp. FindOri) procedure.
She wins if the judge outputs that i∗ has truly produced σ∗, while this is not
the case.

44 S. Canard, A. Jambert, and R. Lescuyer

Expnf
Π,A(λ, n, m):

– (PK, SK)← setup(1λ, n, m);
– (m∗, σ∗, i∗, τ∗)← A(∗)

gen(PK, isk, osk);
– If

[
Verify(m∗, σ∗, PK) = 0

]
or

[
I∗ ∈ CU

]
or

[
(I∗ = (sig, i∗) and

∃(mk, ik, ·, ·, ·) ∈ Σsig s.t. (ik, mk) = (i∗, m∗))
]

or
[
(I∗ = (san, j∗) and

∃(·, ·, jk, ·, m′
k, ·) ∈ Σsan s.t. (jk, m′

k) = (j∗, m∗))
]
, then return 0.

– If ∃s ∈ {full,ori} s.t. Judge(m∗, σ∗, (s, I∗, τ∗)) = 1, then return 1.

Remark 2. Even if relations exist between security properties, no implication re-
mains. This is less obvious in the relationship between non frameability and ac-
countability but (i) an adversary against accountability and using the AlgOpen

procedure to win the experiment is unable to win against the non frameability
experiment ; (ii) an adversary against the non-frameability is stronger (as he
controls all the issuing keys isk) than an adversary against the accountabilities
(who only controls isksan or isksig).

The suitability with simple sanitizable signature schemes [7] and the way to
add extensions [9] are given in the full version of the paper.

4 Primitives

Before giving a construction, let us begin by describing some cryptographic prim-
itives we will use. Let λ be a security parameter.

Digital signature schemes. We will need a standard signature scheme S =
(KGn,Sign,Verif) specified by algorithms for key generation, signing and ver-
ifying. It should satisfy the standard notion of unforgeability under chosen mes-
sage attack [16]. In a nutshell, the adversary is given the public key and can in-
teract with a signing oracle. Finally, the adversary outputs an attempted forgery
(m, σ) and wins if σ is valid, and m was never queried to the signing oracle. We
denote by Succunf

S,A(λ) the success probability of the adversary A against S.

Pseudo-random functions. Let PRF = (FKGn,PRF) be a pseudo-random
function, which is defined by the generation algorithm and the pseudo-random
function itself. An adversary A against such scheme is given access to a random
function oracle and outputs a value x0. After that, a bit b is secretly and ran-
domly chosen. If b = 0, the adversary receives the output of the PRF on x0. If
b = 1, the adversary receives a random value. The adversary finally outputs a
bit b′. The advantage Advprf

PRF,A(λ) of A is the difference between 1/2 and the
probability that b′ = b.

Group Signatures. In the following, we will need two different types of group
signature schemes. First, a BSZ type group signature scheme [4] and second, a
similar concept where we do not want an interactive join protocol between the
group manager and a group member, but the non-frameability property. This is

Sanitizable Signatures with Several Signers and Sanitizers 45

an hybrid model between the BMW model [3] for static groups and the BSZ [4]
one for dynamic groups. The non-frameability property is needed to ensure ac-
countability, since the signer needs to produce a signature without the presence
of the sanitizers [8].

A group signature scheme GS is composed of an issuer, an opener and mem-
bers and is given by a tuple (GKGn,UKGn, Join, [NI-Join, GSKGn,] GSign,
GVerif, Open, Judge) described as follows. The join protocol is denoted NI-
Join in case of a non-interactive procedure and it is next necessary for each user to
execute the GSKGn procedure. If Join is interactive, the latter is not necessary.

GKGn is a probabilistic algorithm which on input 1λ outputs the key pair
(ik, gpki) of the issuer (sub-procedure called IGKGn), the key pair (ok, gpko)
of the opener (sub-procedure called OGKGn) and the group public key
gpk = (gpki, gpko).

UKGn is a probabilistic algorithm executed by each user i and which on input
1λ outputs her key pair (upk[i],usk[i]).

Join is an interactive protocol between the issuer taking on input ik and upk[i]
and user i taking on input usk[i]. The issuer makes a new entry reg[i] in its
registration table reg. The new group member i obtains msk[i].[

NI-Join is an algorithm executed by the issuer taking on input ik and mpk ⊆
upk. The issuer outputs its registration table reg.

GSKGn is an algorithm executed by a group member i that on input usk[i]
and reg[i] outputs a private signing key denoted msk[i].

]

GSign is a probabilistic algorithm that takes on input a message m and a
private signing key msk[i] and outputs a group signature σ on m.

GVerif is an algorithm that on input a message m, a group signature σ and
gpk outputs 1 if the signature is valid, and 0 otherwise.

Open is an algorithm which on input a message m, a group signature σ and
the opener key ok outputs (in a deterministic way) an integer i ≥ 0 and (in
a probabilistic way) a proof τ that i has produced the signature σ on m. If
i = 0, then no group member produced σ.

Judge is a deterministic algorithm taking on input a message m, a group
signature σ, an integer i, the public key upk[i] of the entity with identity i
and a proof-string τ . It outputs 1 if the proof τ is valid and 0 otherwise.

– Anonymity. The anonymity property says that the adversary, given sig-
natures produced by a user (among two of his choice) is not able to guess which
users provided the signatures. During the related experiment, A is given access
to ik, can corrupt user, obtain their keys, ask for the opening of group signatures
and has access to a challenge oracle which takes as input two non-corrupted
member i0 and i1 and a message m and outputs the group signature of user
ib, for a bit b set by the experiment. Eventually, A outputs a bit b′. Next, the
advantage Advano

GS,A(λ) of A is the difference between 1/2 and the probability
that b′ = b.

– Traceability. This property says that the adversary is not able to output a
valid group signature such that the opening and judge procedures do not occur

46 S. Canard, A. Jambert, and R. Lescuyer

properly. A is given access to ok and outputs a valid (m, σ) which is accepted
by the experiment if either the opening procedure outputs i = 0 or the Judge

procedure cannot succeed. The success probability Succtrac
GS,A(λ) the adversary

A is next the probability that the experiment accepts.
– Non-frameability. An adversary A is not able to falsely accuse an honest

user from having produced a valid group signature. A is given access to (ik, ok)
and outputs a valid (m, σ, i, τ) which is accepted by the experiment if i is not
corrupted (and her keys are unknown) and the judge accepts the proof τ that i
has produced σ while this is not the case. The success probability Succnf

GS,A(λ)
the adversary A is next the probability that the experiment accepts.

5 A New Tool: Trapdoor “or” Proof

A Zero Knowledge Proof of Knowledge (ZKPK) is an interactive protocol during
which a prover proves to a verifier that he knows a set (α1, . . . , αq) of secret values
verifying a given relation R without revealing any information about the known
secrets. We denote by Pok(α1, . . . , αq : R(α1, . . . , αq)) such proof of knowledge.

Introduction. Let Rel = {(x, w)} be a binary relation. We first consider the
protocol, corresponding to a proof of knowledge for Rel, which is played by a
prover, taking on input x and a witness w, and a verifier taking on input x.
In fact, following [12,20], we consider a set X = (x1, · · · , x�) and a proof of
knowledge of the “or” statement where both the prover and the verifier take the
common input X , while the prover is also given a private input wi such that
∃xi ∈ X such that(xi, wi) ∈ Rel. Additionally to the witness itself, the verifier
should not be able to obtain the index i related to xi.

In our construction, a designated entity should be able to know which index i
is really used by the witness of a user to verify Rel, while it is still infeasible for
every other actors. To the best of our knowledge, this notion of trapdoor or proof
does not exist in the literature. However, it can be very useful, as we will see
later for our main construction of an (n, m)-sanitizable signature scheme, but
also e.g. for e-voting where the result of the vote (candidate A “or” candidate B)
should not be known, except by authorized scrutineers.

Definitions. In the following, the above or proof is next denoted TPok(wi :
∃i ∈ [1, �]|(xi, wi) ∈ Rel) and the whole system, including the key generation
TKGn for the trap, and the “opening” procedure TOpen, is denoted T OP =
(TKGn,TPok,TOpen).

As usual, such a proof of knowledge should verify the completeness (a valid
prover knowing one such wi is accepted with overwhelming probability), the
soundness (a false prover who does not know any such wi should be rejected with
overwhelming probability) and the honest-verifier zero-knowledge properties (the
proof does not reveal any information about the witness).

Cipher commuting relations. In the following, we will describe a way to
generically design a trapdoor or proof for any relation Rel. For this purpose, we
need to commute the relation and the encryption procedure of a public key en-

Sanitizable Signatures with Several Signers and Sanitizers 47

cryption scheme and we thus need to restrict the relations where such commuting
operation is possible, which gives us the following definition.

Definition 2 (Cipher commuting relation). Let λ be a security parameter.
Let E = (EKg,Enc,Dec) be a secure probabilistic encryption scheme. Let Rel

be a binary relation. We say that Rel is a cipher commuting relation if for all
x, w, for all (epk, esk)←− EKG(1λ),

(x, w) ∈ Rel⇐⇒ (Enc(x, epk), w) ∈ Rel.

Our generic construction. Let λ be a security parameter, E = (EKg,
Enc, Dec) be a secure probabilistic encryption scheme and Rel be a cipher
commuting relation. We want to design the proof TPok(wi : ∃i ∈ [1, �]|(xi, wi) ∈
Rel) where the prover knows wi such that (xi, wi) ∈ Rel.

In a nutshell, we encrypt xi and use a traditional or proof that the encrypted
value is one element related to Rel, without revealing which one. We next use
the cipher commuting property of Rel to prove that the knowledge of a witness
which verifies Rel with the cipher ci related to xi.

Let us first consider that the trap has been generated by executing (epk, esk)
← EKG(1λ). The proof next works as follows.

1. Computes ci = Enc(xi, epk).
2. Generates the standard honest-verifier zero-knowledge proof with both rela-

tions:
(a) Pok(xi : ∃i ∈ [1, �]|ci = Enc(xi, epk)) and
(b) Pok(wi, xi : (Enc(xi, epk), wi) ∈ Rel).

As they are connected with an “and”, these two proofs of knowledge can be
composed together, using standard techniques [11]. The verifier, knowing the re-
lation Rel, the ciphertext ci and epk, can easily verify the two above Pok, using
standard techniques. Finally, the owner of esk can easily decrypt ci to retrieve xi.

A concrete construction. Let G be a group of prime order p. Let u, h
be random generators of G and let v and z be two elements of G. We want to
design the trapdoor or proof denoted TPok(α : ∃(b, f){(u, v), (h, z)}|f = bα).

Our solution makes use of a homomorphic encryption scheme π = (KeyGen,
Enc, Dec) such that the trapdoor of our construction is the decryption key dk.
The encryption public key is ek = a and the corresponding secret key is α ∈ Z

∗
p

such that a = dα where d ∈ G. A prover having access to e.g. the discrete loga-
rithm x ∈ Z

∗
p of v in base u, that is v = ux, can produce a trapdoor or proof as fol-

lows, with the ElGamal encryption scheme as an concrete instantiation (see [15]).

1. Encrypt v and u as cv = (t1 = vaw, t2 = dw) and cu = (t3 = uar, t4 = dr)
where w, r ∈ Z

∗
p.

2. Produce a (traditional) proof of knowledge on x, r and w such that:
(a) the pair of encrypted values corresponds to either (v, u) or (z, h), using a

set membership proof: (t1/v = aw∧t3/u = ar) or (t1/z = aw∧t3/h = ar)
(together with the proof that t2 = dw and that t4 = dr.

48 S. Canard, A. Jambert, and R. Lescuyer

(b) using the encrypted value (which satisfies the relation v = ux) and the
homomorphic property of the encryption scheme, it is done by producing
the proof of knowledge of x such that cv = cx

u. For this purpose, we use
that tx3 = uxarx = varx = t1a

rx−w.

The final trapdoor or proof is composed of (t1, t2, t3, t4) and the following proof
of knowledge:

V = Pok

(
w, r, x, r̄ :

(
(t1

v = aw ∧ t3
u = ar) ∨ (t1

z = aw ∧ t3
h = ar)

)

∧t2 = dw ∧ t4 = dr ∧ t1 = tx3a−r̄aw ∧ 1 = tx4d−r̄
)

Anyone in possession of α can retrieve the encrypted pair (v, u) and obtain the
known discrete logarithm. We here present the more general case where we need
to encrypt both u and v. As in [12,20], the (trapdoor) or proof for a representation
can also be treated similarly. We do not detailed the case of a representation but
we will use it in the following section.

6 Full Transparent and Fully Anonymous Multi-players
Sanitizable Signature

We now describe our fully transparent and fully anonymous sanitizable signature
scheme for several signers and sanitizers.

Following the idea from [8], one user is able to sanitize a message/signature
pair if she belongs to a group created by the initial signer and related to this
message/signature pair. Next, the principle of our signature is to associate (i) a
signature of the signer, as member of a group of signers, on the fixed parts of the
message with (ii) a group signature on the admissible parts of the message, on
behalf of the new group generated by the signer and (iii) a trapdoor or proof of
knowledge of either a certified signer key or a certified sanitizer key. The latter
is added to prevent everybody to distinguish a signed message from a sanitized
one, except by Oalg.

Our scheme is composed of openers Ofull, Oalg, Oori, a group manager GM
for a group signature scheme and a certification authority denoted CA.

Generation Phases. Let μ be a security parameter. We note GS1 (resp. GS2)
an interactive-join (resp. non-interactive) group signature scheme, S a standard
signature scheme, T OP a trapdoor or proof system (cf. Section 5) and PRF a
pseudo-random function.

Setup Phase. The certification authority CA executes twice the key generation
S.KGn for the standard signature scheme S to obtain two different keys pairs
denoted (casksi, capksi) and (casksa, capksa). The group manager GM executes
GS1.IGKGn, which gives isk and gpki. The openerOfull executes GS2.OGKGn,
which gives oskfull and gpkfull. The opener Oalg executes the T OP .TKGn al-
gorithm, which gives oskalg and gpkalg. The openerOori executes GS1.OGKGn,
which gives oskori and gpko. In the following, we denote gpksi = (gpki, gpko).

Sanitizable Signatures with Several Signers and Sanitizers 49

To sum up, we have isksig = (isk, casksi), isksan = (casksa) and the general
public key gpk = (capksi, capksa gpksi, gpkfull, gpkalg).

Signer Key Generation. Each signer i executes the following. She uses the
Join interactive protocol with GM to get her private signing key msk[i]. Next,
she executes the key generation for the pseudo-random function to obtain uk[i] =
PRF .FKGen(1μ). Then, she uses the user key generation GS2.UKGn for GS2

to obtain both upksi[i] and usksi[i]. Finally, she sends upksi[i] to CA with a non-
interactive proof of knowledge of the related usksi[i] and CA generates ucsi[i] =
S.Sign(upksi[i], casksi).

Sanitizer Key Generation. Each sanitizer j uses GS2.UKGn to get (usksa[j],
upksa[j]) and sends upksa[j] to CA with a non-interactive proof of knowledge of
the related usksa[j]. Then, CA generates ucsa[j] = S.Sign(upksa[j], casksa).

Signature Procedure. During this procedure, the signer first generates the
keys of a new group signature scheme (for herself and the chosen sanitizers). She
next produces two different group signatures, the first as a member of the group
of signers and the second as a member of the new formed group. Let us consider
the i-th signer, i ∈ [1, n] and let m be the message, divided into t parts, she wants
to sign. Following ADM given on input, let mFIX be the part of m which will not
be sanitizable by the sanitizers. The Sign procedure is described as follows.

Choice of Sanitizers. The signer chooses a subset J ⊆ [1, m] of sanitizers
allowed to modify her message with p̃ksan the set of their public keys.

Generation of a Group. The signer creates a group for herself and the chosen
sanitizers. For this purpose, she uses the group signature scheme GS2 with a
non-interactive join. More precisely, she computes rd = PRF(uk[i], idm) where
idm = mFIX‖ADM is the identifier of the initial message.

She next carries out the key generation algorithm IGKGn of the group sig-
nature scheme GS2, using rd as a random (see also [8]). It gives isk[i, idm] and
gpki[i, idm]. We note gpk[i, idm] = (gpki[i, idm], gpkfull). Then, she uses the non-
interactive join procedure NI-Join of GS2 to generate the private signing key
for each group members, using rd as a random. We denote it reg[i, idm] for the
signer and regsa[j, idm] for each sanitizer j ∈ J .

She finally obtains her own membership secret key for this group msk[i, idm]
thanks to the GSKGn procedure on input upksi[i] and reg[i, idm].

Group Signatures Generation. She computes two group signatures, the first
as a signer σfix = GS1.GSign(msk[i], msig) with msig = idm‖p̃ksan‖regsa, the
second as a member of the new group σfull = GS2.GSign(msk[i, idm], m).

Proof of Validity. The signer finally proves, thanks to the non-interactive zero-
knowledge proofs of knowledge π, that (i) the above is correctly done and (ii)
she is either a signer or a sanitizer.

– Pok(msk[i, idm], upksi[i], reg[i, idm]) : msk[i, idm] = GS2.GSKGn(upksi[i],
reg[i, idm])); and

50 S. Canard, A. Jambert, and R. Lescuyer

– Pok(msk[i, idm] : σfull = GS2.GSign(msk[i, idm], m)); and
– TPOK(upksi[i], ucsi[i] : ∃sk ∈ {casksi, casksa}|ucsi[i] = S.Sign(upksi[i],

sk)).

As the proofs are connected with an “and” (which is the case for the trapdoor
or proof), these relations can be composed together [11].

The resulting signature is σ = (π, σFIX, σFULL, ADM, p̃ksan, wi, regsa) where
regsa allows sanitizers to obtain their group member keys afterwards.

Sanitization Procedure. The sanitization algorithm consists, for the san-
itizer, in (i) the creation of a new σ′

FULL, according to her own keys and the
modified message, and (ii) the construction of the corresponding modified proof
π′. Let us consider the j-th sanitizer, j ∈ [1, m], let m be the initial message,
with fixed part mFIX, and let σ = (π, σFIX, σFULL, ADM, p̃ksan, wi, regsa) be a sig-
nature on m and MOD be instructions for a new message m′. First of all, if
pksan[j] /∈ p̃ksan, then the algorithm returns ⊥. Otherwise, she executes the
following steps.

Proof of Group Membership. The sanitizer retrieves its value regsa[j, idm]
in regsa. She executes the GSKGn procedure on input upksa[j] and regsa[j, idm]
to compute msk[j, idm]. Then, she produces a new group signature σ′

full =
GS2.GSign(msk[j, idm], m′) as a member of the authorized modifier.

Proof of validity. She next produces a proof π′ as a sanitizer :

– Pok(msk[j, idm],upksa[i], regsa[j, idm]) :
msk[j, idm] = GS2.GSKGn(upksa[j], regsa[j, idm])); and

– Pok(msk[j, idm] : σfull = GS2.GSign(msk[j, idm], m′)); and
– TPOK(upksa[j], ucsa[j] : ∃sk ∈ {casksi, casksa}|ucsa[j] = S.Sign(upksa[j],

sk)).

The resulting signature is σ′ = (π′, σFIX, σ
′
FULL, ADM, p̃ksan, wi, regsa).

Verification and Opening Procedures. Verification. On input a signa-
ture σ = (π, σFIX, σFULL, ADM, p̃ksan, wi, regsa) on a message m, the verification
procedure simply checks both signatures σFIX and σFULL and the whole proof π.
If all is correct, she outputs 1, otherwise 0.

Opening. We finally describe the different opening procedures for a signature
σ as defined above. The AlgOpen procedure is simply executed by using the
trap of the trapdoor or proof as shown in Section 5 with the key oskalg. The
FindOri procedure is the execution of the GS1.Open algorithm related to the
group signature scheme for signers. Next, the SigOpen is executed as described
in [8], by using the pseudo-random function and the opening algorithm of the
group signature scheme. The FullOpen algorithm corresponds to GS2.Open.

Security Theorem. We finally give the following security theorem.

Sanitizable Signatures with Several Signers and Sanitizers 51

Theorem 1. Our full transparent and fully anonymous multi-players sanitiz-
able signature verifies all the required security properties, assuming that the used
group signature, the pseudo-random function, the signature scheme (underlying
the trapdoor or proof) and the trapdoor or proof are secure.

Proof (sketch, see full paper for the full proof). Several parts of the proof (im-
mutability, unlinkability and accountabilities) are similar to the the one given
in [8], except that we have to replace the unforgeability of the used signature
scheme by the traceability and non-frameability of the group signature scheme
GS2. The anonymity properties are given by the anonymity of the group sig-
nature scheme, together with the zero-knowledge property of our trapdoor or
proof. The non-frameability and traceability properties are related to the ones
related to the used group signature schemes, together with the unforgeability
of CA’s signature scheme. The full transparency is obtained according to the
anonymity of the group signature scheme and the zero-knowledge property of
the trapdoor or proof. ��

Dealing with the group anonymity. The group anonymity states that the
anonymity of sanitizers (resp. signers) is preserved, except for the sanitizers (resp.
signers). In this case and regarding the above construction, each sanitizer (resp.
signer) should be able to independently decrypt the same message, corresponding
to the one related to the full opener or the origin opener: we need a multi receiver
encryption scheme.

In such a scheme, a designated authority having a master key generates all
the “receivers” (sanitizers or signers) secret keys. Such concept already exists, it
is named broadcast encryption [14] when it includes a revocation mechanism,
traitor tracing [6] when it treats the case of fraudulent receivers or multi-recipient
encryption [2] when several messages are encrypted for several recipients. Our
need is close to public key traitor tracing scheme, except we do not necessarily
need a tracing procedure. Thus a practical construction can be obtained with [6].

Acknowledgments. This work has been supported by the European Com-
mission under Contract ICT-2007-216676 ECRYPT II. We are grateful to the
anonymous referees for their valuable comments.

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In:
di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

2. Bellare, M., Boldyreva, A., Staddon, J.: Randomness Re-use in Multi-recipient
Encryption Schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
85–99. Springer, Heidelberg (2002)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General
Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–
629. Springer, Heidelberg (2003)

52 S. Canard, A. Jambert, and R. Lescuyer

4. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of
Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: An Efficient Public Key Traitor Scheme (Extended
Abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353.
Springer, Heidelberg (1999)

7. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

8. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of Sanitizable
Signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

9. Canard, S., Jambert, A.: On Extended Sanitizable Signature Schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010)

10. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor Sanitizable Signatures and
Their Application to Content Protection. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276.
Springer, Heidelberg (2008)

11. Chaum, D., Pedersen, T.P.: Transferred Cash Grows in Size. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer, Heidelberg (1993)

12. Cramer, R., Damgrard, I., Schoenmakers, B.: Proof of Partial Knowledge and Sim-
plified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

13. Delerablée, C., Pointcheval, D.: Dynamic Fully Anonymous Short Group Signa-
tures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210.
Springer, Heidelberg (2006)

14. Fiat, A., Naor, M.: Broadcast Encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

15. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

16. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

17. Gong, J., Qian, H., Zhou, Y.: Fully-Secure and Practical Sanitizable Signatures.
In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011)

18. Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)

19. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society (2000)

20. De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On monotone formula
closure of SZK. In: FOCS 1994, pp. 454–465. IEEE (1994)

21. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor Sanitizable Signatures Made Easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010)

	Sanitizable Signatures
with Several Signers and Sanitizers
	Introduction
	Multi-players Sanitizable Signatures
	Security Requirements
	Primitives
	A New Tool: Trapdoor ``or'' Proof
	Full Transparent and Fully Anonymous Multi-players Sanitizable Signature
	References

