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ABSTRACT
QUAD is a stream cipher whose provable security relies on
the hardness of solving systems of multivariate quadratic
equations. This paper explores FPGA implementations of
the stream cipher QUAD and, more specifically, small area
ones. Our smallest implementation of QUAD requires only
85 slices (2961 GE) on a Virtex 4 Xilinx FPGA, which makes
it not only the smallest provably secure stream cipher, but
also a very good competitor among conventional stream ci-
phers. In particular, we demonstrate an implementation
of QUAD’s underlying PRNG which results in a 68% im-
provement over the smallest known AES implementation on
FPGA [13].

Categories and Subject Descriptors
B.m [Hardware]: Miscellaneous; E.3 [Data]: Data Encryp-
tion

Keywords
FPGA, RFID, stream cipher, PRNG, forward security, user
privacy, hardware implementation.

1. INTRODUCTION
With the development of pervasive devices, highly efficient
and/or compact implementations of cryptographic primi-
tives such as pseudo-random number generators and encryp-
tion algorithms becomes of special interest. The applications
are manyfold, ranging from privacy protection and commu-
nication confidentiality to device authentication. Symmetric
encryption can be divided into two main types: block ciphers
and stream ciphers. Block cipher design may currently be
more mature than stream cipher design, but stream ciphers
remain of interest because of their efficiency or their com-
pactness and are thus often used in practice. As suggested
by the eSTREAM [19] call for stream cipher proposals, at
least two profiles seem to be of interest: stream ciphers that
are much faster than existing block ciphers, and stream ci-
phers that require much lower resources for their hardware
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implementation than existing block ciphers. However about
one third of the eSTREAM candidates have already been
broken which seems to show that building both a secure
and hardware efficient stream cipher is not an easy task.

From a security point of view, a potential advantage of
stream ciphers–that is not sufficiently used in practice–is
their close connection with the theory of secure pseudo-
random number generators (PRNGs) which was developed
in the 80’s. Several provable secure PRNGs have been pro-
posed. A general construction uses iterations of a one way
function and the security proof relates the indistinguisha-
bility of the generated sequence to the one wayness of the
function. One of the first provably secure PRNGs was in-
troduced by M. Blum and S. Micali in [10] and relates the
security of the PRNG to the one-wayness of exponentiation
modulo a prime number. Later, L. Blum, M. Blum, and
M. Shub proposed in [9] another PRNG exploiting the con-
jectured intractability of quadratic residuosity modulo Blum
integers, and Alexi, Chor, Goldreich and Schnorr proposed
in [4] a PRNG construction which security relies on the RSA
assumption. Recently [41], R. Steinfeld, J. Pieprzyk, and
H. Wang introduced another PRNG based on a new as-
sumption (the so called small solution RSA assumption).
Finally, R. Impagliazzo and M. Naor [32] and J.-B. Fischer
and J. Stern [42] proposed PRNG constructions respectively
relying on the difficulty of the subset sum problem and of
the syndrome decoding problem. Despite the theoretical
interest of those constructions, none really allows for effi-
cient hardware implementations. Those PRNGs either have
a huge internal state (up to 3000 bits), or use a highly expen-
sive one way function (exponentiation modulo a big prime
number), or only extract a few bits per iteration.

At Eurocrypt 2006, a new stream cipher with provable secu-
rity called QUAD was proposed [7]. This cipher has strong
security properties since the indistinguishability of the asso-
ciated PRNG is proved to be reducible to the intractability
of the well studied problem of solving multivariate quadratic
equations [24]. The smallest version of QUAD recommended
in [7] has a small internal state of 160 bits and can extract
up to 160 bits per iteration, which makes it attractive for
practical use. An additional built-in feature of the stream
cipher QUAD, is the natural one-wayness of the function–a
randomly chosen multivariate quadratic system: as is shown
in the sequel, this provides an additional feature called for-
ward security, which makes QUAD particularly attractive
when privacy is a concern as is the case with RFIDs [39].



We further explain in this paper other properties of QUAD
that also perfectly fit the RFID setting. The reader has to
keep in mind that this cipher has security proofs attached
to it. Hence, a fair comparison should involve the PRNGs
cited above [9, 10, 4, 32, 42] or optimised versions of these
generators like [26]. Nevertheless, we will show in the follow-
ing that our implementations of QUAD’s PRNG demands
far less space than any other provably secure PRNG and is
close to the size of standard practical stream cipher imple-
mentations. Our smallest implementation requires less than
33% of the number of slices required by the smallest AES
FPGA implementation known to date [13], making QUAD
a good candidate for radio frequency tags (RFIDs). The
purpose of this paper is to show that the strong security
requirements satisfied by QUAD are compatible with an ef-
ficient hardware implementation.

This paper is divided as follows: Section 3 briefly describes
the stream cipher QUAD. Section 4 describes our various
FPGA implementations of QUAD’s underlying PRNG. Sec-
tion 5.1 compares the performance of our implementations
of QUAD with several provably secure PRNGs as well as
with state of the art implementations of the AES.

2. MULTIVARIATE QUADRATIC SYSTEMS
We consider a finite field GF(q). A multivariate quadratic
equation (or equivalently a multivariate quadratic polyno-
mial) in n variables over GF(q) is a polynomial of degree at
most 2 in GF(q)[x1, . . . , xn] which can be written as

Q(x) =
X

1≤i≤j≤n

αi,jxixj +
X

1≤i≤n

βixi + γ,

with coefficients αi,j , βi, and γ in GF(q). In the particu-
lar case q = 2, which is the one considered in the sequel,
monomials xixi and xi are equal.

It is easy to see that the set Q of multivariate quadratic
polynomials in n variables is an N -dimensional vector space
over GF(q), where N = 1

2
n(n+ 3) + 1 if q 6= 2 and N =

1
2
n(n+ 1) + 1 if q = 2. A basis of this vector space is given

by the N − 1 distinct monomial functions of degree one or
two, and the non-null constant polynomial. Any element
of Q can be represented by the N -tuple of its GF(q) co-
efficients in this basis. Throughout the rest of this paper,
by a randomly chosen quadratic polynomial in n unknowns
we mean the quadratic polynomial represented in the above
basis by a uniformly and independently drawn N -tuple of
GF(q) coefficients.

A multivariate quadratic system S of m quadratic equa-
tions in n variables over GF(q) consist of a set (Q1, . . . , Qm)
of m quadratic polynomials in n variables over GF(q). In
the sequel, by a randomly chosen system of m quadratic
form in n unknowns, we mean n independently and ran-
domly chosen quadratic polynomials. Such a system is rep-
resented by mN coefficients uniformly and independently
drawn from GF(q).

We define the problem of solving multivariate quadratic sys-
tems (MQ problem) as follows: given a multivariate quadratic
system S = (Q1, . . . , Qm), ofm quadratic equations over GF(q)
find a value x ∈ GF(q)n, if any, such that Qi(x) = 0 for
all 1 ≤ i ≤ m.

Depending on the respective values of n and m, instances
of MQ can be either easy or very difficult to solve. For m = 1
the number of solutions is known [37] and it is quite easy to
find one solution. When m is significantly smaller than n,
that is for an underdefined quadratic system, finding a solu-
tion is much easier than the exhaustive search on the number
of variables [14]. In the opposite situation of an overdefined
system (m > n) providing m is about N = 1

2
n(n+ 1) + 1

(q = 2 case) or about N = 1
2
n(n+ 3) + 1 (q 6= 2 case)

linearly independent quadratic equations, or more gener-
ally when nearlyN linearly independent quadratic equations
are available, solving an MQ problem is easy by lineariza-
tion. The total complexity is then only O(n6). However,
for general values of m and n the MQ problem is known
to be NP-hard, even when restricted to quadratic equations
over GF(2) (see [24, 22]) or over any finite field (see [40]).

Moreover, what makes the MQ problem particularly well
suited for cryptographic applications is that it is conjec-
tured to be very difficult not only asymptotically and in
worst case, but already for small suitably selected values
of m and n and in terms of the average complexity of solv-
ing a random instance. The problem seems to be the most
difficult when m is close to n. For m = n and q = 2 the com-

plexity of the best known solving algorithms is 2n−O(
√

(n))

and thus rather close to the 2n complexity of exhaustive
search, and totally out of reach of existing computers for
a random instance and values of n larger than 100. Even
when q = 2, m = kn and k > 1 is small enough compared
with n

2
, the best known algorithm such as XL [17] and im-

proved variants of Buchbergers’s Gröbner basis computation
algorithm such as Faugère’s F4 and F5 algorithms [33] are
exponential in n for a randomly chosen quadratic system.
Much research has been dedicated in the past years to the
above problem [16, 15]. Bardet’s Ph.D. thesis [6] provides an
accurate analysis of the complexity of the most efficient al-
gorithm computing Gröbner basis known to solve a random
system of m = kn equations in n unknowns.

3. THE STREAM CIPHER QUAD
This section provides a quick description of QUAD [7]. The
stream cipher QUAD is a practical stream cipher with prov-
able security which was introduced by C. Berbain, H. Gilbert,
and J. Patarin at Eurocrypt 2006. Its security relies on the
hardness of solving randomly generated systems of multi-
variate quadratic equations over a finite field. The security
proof reduces the distinguishability of the keystream gener-
ated by QUAD to the MQ problem: QUAD iterates a one
way function and extracts a certain number of bits at each
iteration. (Iterating a one-way function and extracting a
certain amount of hard core bits is a common way to design
a provable secure PRNG.)

The keystream generation makes use of two systems Sit
and Sout of multivariate quadratic equations both sharing
the same n unknowns over GF(q), as described on Fig. 1.
The first system Sit is used to update the internal state and
thus contains n equations, whereas the second system Sout
produces the keystream and contains m − n equations. As
explained in [7], the quadratic systems Sit and Sout, though
randomly generated, are both publicly known.
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Figure 1: QUAD’s internals: Sit updates the inter-
nal state x while Sout filter out the internal state to
produce the pseudo random sequence

In our special case of a hardware implementation, it makes
sense to focus on the boolean setting GF(q) = GF(2). We
will restrict our study to the conservative case m = 2n, that
is both systems Sit and Sout contain n quadratic equations in
the n bits of the internal state. In the sequel and according
to Fig. 1, we denote by x = (x1, . . . , xn) the n-bit internal
state of the generator.

Hence, keystream generation amounts to iterating the fol-
lowing steps:

• Compute
`
Sit(x), Sout(x)

´
=
`
Q1(x), . . . , Q2n(x)

´
, with

x as the current value of the internal state;

• Output the sequence Sout(x) =
`
Qn+1(x), . . . , Q2n(x)

´
of n keystream bits;

• Update the internal state x with the sequence of the
n first generated bits Sit(x) =

`
Q1(x), . . . , Qn(x)

´
.

To turn this secure pseudo-random generator into a stream
cipher, an initialization procedure is required which necessi-
tates the introduction of an initialization vector (IV). This
step described in [7] is done by reusing the components
which actually produce the keystream and thus do not re-
quire much more circuitry. (It requires about 10 additional
gate equivalents for our smallest proposal and about 100 ad-
ditional gate equivalents for our medium size proposal.) More-
over, in some contexts, such as in the RFID setting, the IV
is not required at all. Consequently we restrict in the follow-
ing our attention to the problem of implementing QUAD’s
underlying PRNG alone.

It has been proved in [7] that given a random system and
a random initial value, the keystream sequence produced
by QUAD is indistinguishable from a random sequence if
the problem of inverting a randomly chosen system of mul-
tivariate quadratic equations is intractable. However, al-
though equations of the system have to be randomly gen-
erated, they does not need to be kept secret. The FPGA
designs proposed in the next section take advantage of this
simple fact.

In the sequel, we consider three different versions of QUAD:
one with only n = 128 bits of internal state (and thus with
a security level of at most 264), the smallest recommended
version of [7] with n = 160 bits of internal state, and finally,

a more conservative version with n = 256 bits of internal
state. In all three cases, both systems Sit and Sout consist
of n quadratic equations in n variables.

4. FPGA DESIGNS
This section presents several designs for implementing QUAD
on an FPGA with a variety of sizes and throughputs. Our
main focus is on designs with size as small as possible, but
we discuss other cases which may still be of interest. Re-
sults were obtained using the development environment ISE
version 8.1 together with the smallest Xilinx FPGA of the
Virtex 4 familly, namely the XCLV25 which uses 90 nm
CMOS processes. We used the number of slices to allow a
fair comparison of the required area with other designs [13,
44, 38].

The rest of this section is organized as follows: we first out-
line basic principles shared by our designs in a first para-
graph. We then present our lowest area design in a second
paragraph, whereas the third paragraph exposes another im-
plementation with a better throughput/area ratio. This al-
lows to select one or the other depending on the targeted
applications. Two of the most important usage scenarios
are described in Section 5.

4.1 Preliminaries
The most obvious way of implementing QUAD’s underlying
PRNG is of course to hardwire the two systems of multi-
variate quadratic equations Sit and Sout in a straightforward
manner. This however, requires a huge amount of space: the
näıve technique for describing two randomly chosen systems
of n quadratic equations in n unknowns needs O(n3) coef-
ficients, which necessarily translates into a very large im-
plementation. For instance, an internal state of 160 bits re-
quires 4 Mbits to store the coefficients of the two systems Sit
and Sout.

Our implementations of the PRNG are all based on the same
simple idea in order to achieve a low area design. They
make use of the very special fact that the two systems of
multivariate quadratic equations describing QUAD are pub-
licly known; the only secret information concealed to an at-
tacker is the internal state. Hence, the only constraint on
these systems is that they have to be randomly generated,
which means drawn from a large class of systems without
specific properties, or behave like randomly chosen systems
of quadratic equations with respect to the system solving
problem. This section shows how one can take advantage of
the fact that these coefficients are publicly known and only
have to be chosen in a random fashion. We note that the
random generation of the coefficients is not required to be
cryptographically secure in this case: coefficients are pub-
licly known and the only point in generating the coefficients
randomly is trying to reach one hard instance of the math-
ematical problem underlying QUAD. In fact, we show that
regenerating the coefficients of the systems at each iteration
of QUAD’s PRNG is enough to transform the need for a
huge memory into a tiny generation circuitry. We conjec-
ture that the quality of the randomness used for generating
the coefficients does not lower the security of the overall de-
sign. Indeed, we carefully checked–as recommended by the
authors of QUAD [7]–that all the desirable properties of the
set of polynomials obtained this way are present: we en-
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Figure 2: Time required to solve with algorithm F4
from Magma a randomly generated system of
n quadratic equations in n variables and time re-
quired to solve with F4 a quadratic system of n equa-
tions in n variables generated via our proposal for a
low area design (dashed curve)
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Figure 3: Time required to solve with F4 a ran-
domly generated system of quadratic of n equations
in n variables and time required to solve with F4 a
quadratic systems of n equations in n variables gen-
erated via our proposal for a medium area design
(dashed curve)

sured that the polynomials form a linearly independent set
and that each of the quadratic polynomials has a high rank.
Moreover, we fed the systems generated along our propos-
als to the F4 system solver [21] of Magma [2] to compare
their behavior with respect to the one of quadratic systems
generated with the use of a cryptographically secure PRNG
(namely, the Blum-Blum-Shub generator [9]). The time re-
quired to solve a random instance and the time required to
solve systems generated through our proposals match per-
fectly. This evidence, described by Fig. 2 and Fig. 3, sug-
gests that our proposed system generation does not intro-
duce additional weaknesses into QUAD.

4.2 Lowest Area Design
This paragraph describes the smallest of our designs, which
results in a 68% improvement on the smallest known AES
design on FPGA [13]. An obvious method for reducing the
amount of logic necessary to implement our system of multi-
variate quadratic equations is to perform the computations

c
(k)
i,j xixjc

(k)
i,j

xi xj
&

state x = (x1, . . . , xn)

f

NFSR & temp. value of Qk(x)

Figure 4: For this very low area design, two main
components perform all the computations. The
NFSR generates each coefficient of each polynomial
in turn. The second component computes the value
of the corresponding monomial at the same time.
Their combination (a bit product) is accumulated
in the temporary output value

sequentially. In our case this amounts to compute each poly-
nomial of the system in turn, just as their plain mathemat-
ical expression:

Qk(x1, . . . , xn) = c
(k)
0,0 + c

(k)
1,1x1x1 + c

(k)
1,2x1x2 + · · ·

· · ·+ c
(k)
n−1,nxn−1xn + c(k)

n,nxnxn.
(1)

To this end, our design makes use of two main components:
the first one (a non linear feedback shift register, abbrevi-
ated NFSR) generates the coefficients of each monomial of
each polynomial in turn and the other one computes the
value of the monomials corresponding to the coefficient be-
ing generated. More precisely, a new monomial is computed
at every clock tick and its contribution is accumulated to
the temporary value for the output polynomial being com-
puted. Then, the process starts again and a new polynomial
is computed; once all polynomials are computed half of the
values is used as keystream and the other half is used to
update the internal state, just as shown on Fig. 1.

Our implementation of an iteration of QUAD’s PRNG is
thus made of two main components as summarized on Fig. 4.
One component computes each of the n(n+1)/2 monomials
in turn, while the other generates the 2n · n(n + 1)/2 =
n2(n+ 1) coefficients sequentially.

The first component computing the monomials is imple-
mented as an addressable memory so as to lower its com-
plexity. The second component is implemented as a non
linear feedback shift register (NFSR) with a small internal
state, so that it only requires a small number of slices but
large enough to avoid any repetition in the sequence of the
n2(n− 1) coefficients; in practice an internal state of about
32 bits is sufficient and allows for an exhaustive check of the
maximality of the NFSR’s period. We reused one of Achter-
bahn’s NFSR’s [23] with a 31-bit internal state, a period
of 231 − 1 and a feedback function defined as follows:

f(t0, t1, . . . , t30) = t0 + t3 + t5 + t7 + t10 + t16 + t17
+ t18 + t19 + t20 + t21 + t24 + t30
+ t5t15 + t11t18 + t16t22 + t17t21
+ t1t2t19 + t1t12t14t17 + t2t5t13t20.

The monomials and the coefficients are then combined as
shown on Fig. 4 to compute the value of each of the 2n poly-
nomials in turn. We alternate between the computation of
one polynomial of Sout (which is then output) and the com-



putation of one polynomial of Sit (which will be used to
update the internal state) to ensure a constant output rate.
Half of the time the value of the polynomial is output, half
of the time it is accumulated into a buffer representing the
value of Sit. When filled, this buffer is used to update the
internal state of the cipher for the next iteration. Thus,
assuming that

`
Sit(x), Sout(x)

´
=
`
Q1(x), . . . , Q2n(x)

´
, the

polynomials are computed in the following order: Qn+1(x)
which is output, Q1(x) which is put into the buffer, Qn+2(x)
which is output, Q2(x) which is put into the buffer, and so
on until all the 2n polynomials are computed. At this time,
the internal state is updated with the buffer’s content.

Table 1: Low area implementation results
Version 128 bits 160 bits 256 bits

Flip/Flops 66 68 68
4 input LUTs 153 169 181
Slices 85 92 97
Gate Equiv. (GE) 2961 3694 4611
Max. Freq. (MHz) 267 244 243
Throughput (Kbps) 16.1 9.5 3.7

This design requires a minimal area since it takes about
2n memory bits plus the size of the NFSR to implement it.
The drawback is that each iteration of the PRNG requires
O(n3) steps, which results in a somewhat lower throughput
compared to practical stream ciphers but a usual throughput
when compared to provably secure ciphers. Figures about
our implementation are given in Table 1.

4.3 Improving the Throughput/Area Ratio
The implementation proposed in the previous paragraph
uses a non-linear feedback shift register (NFSR) to regener-
ate the coefficients of the polynomials at each iteration. This
handles the n2(n+1) coefficients sequentially, which though
allowing a highly compact design, has an obvious impact
on the time needed to iterate the PRNG and consequently
on the throughput. In this paragraph another implemen-
tation is described which offers a better trade-off between
size and throughput. Instead of computing the contribution
of each monomial to the value of each of the 2n polynomi-
als in turn, which takes O(n3) time, we suggest to compute
the contribution of each monomial to the value of 2n poly-
nomials simultaneously. For this to happen, one needs to
generate 2n coefficients at each clock. We show how the use
of a finite state machine (FSM) allows for parallel genera-
tion of the coefficients while maintaining a highly compact
design, thus cutting the overall computation time for every
iteration by a factor of 2n.

S0 S0 S0 S0 S0 S0 S0 S0

32-bit state

<<< 1

Figure 5: The finite state machine and its update
function.

The FSM must have a small internal state as well as a
lightweight update function in order to minimize the area.
To reach this goal, we chose an internal state of 32 bits to-
gether with an update function built around 4-bit non-linear

S-boxes. Such S-boxes are convenient since it then requires
at most one LUT in the FPGA implementation to compute
one bit of the next state. There are examples of 4-bit S-boxes
in the literature, see for instance Serpent’s S-boxes [8]. The
internal state of 32-bits is well suited for our three special
cases of interest, namely 128 bits, 160 bits, and 256 bits. As
described by Fig. 5, the update function of our FSM consists
of the following steps:

• Each 4-bit word of the internal state α = (α1, . . . , α8)
of the FSM is mapped through a 4-bit S-box, i.e. the
state is updated via: α =

`
S0(α1), . . . , S0(α8)

´
;

• The state α is rotated by one bit to the left.

Since the FSM has an internal state of 32 bits, there is a
need for an expansion from 32 bits to n bits to produce
the coefficients for the parallel computation of the value of
n polynomials simultaneously. We propose a set of distinct
S-boxes to provide this expansion as sketched in Fig. 6. The
three cases must be specified separately since they do not
require the same expansion factor.

In the case of n = 128, we chose an expansion factor of four.
Four distinct S-boxes of Serpent S0, S1, S2, and S3, are
used to derive the 128 required coefficients from the internal
state α of the FSM as`

S0(α1), . . . , S(α8), S1(β1), . . . , S1(β8),

S2(γ1), . . . , S2(γ8), S3(δ1), . . . , S3(δ8)
´
,

where β = (α <<<1), γ = (α <<<2), and δ = (α <<<3).

Since one iteration of the PRNG requires computing 2n poly-
nomials, we duplicate the circuitry shown on Fig. 6 to com-
pute both Sit and Sout at the same time. In the case n = 256,
four FSMs together with their expansion circuitry have been
used. For the case n = 160 we chose to use three FSMs with
their associated expansion circuitry: one FSM produces four
32-bit words at each clock, while the two others produce only
three 32-bit words to obtain the desired 320 bits of coeffi-
cients at each clock.

Table 2: QUAD’s PRNG implementation with an
improved throughput/area ratio

Version 128 bits 160 bits 256 bits

Flip/Flops 350 418 613
4 input LUTs 781 970 1471
Slices 406 509 763
GE 8117 10184 14959
Max. Freq. (MHz) 262 269 260
Throughput (Mbps) 4.1 3.3 2.0

This implementation requires a smaller surface since it takes
about 3n memory bits plus the size of the FSMs to imple-
ment. But it now takes O(n2) steps to perform an iteration
of the PRNG, hence increasing the throughput. Figures
for this implementation are given in Table 2. One notices
that the throughput decreases with the size of the internal
state since it depends on the parameter n just as the func-
tional 1/n.
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Figure 6: Parallel computation of 128 polynomials. The FSM has an internal state of 32 bits which is
expanded through a set of 4-bit S-boxes to simultaneously produce 128 coefficients. All of these coefficients
are multiplied by the value of the current monomial xixj.

5. CHOSING THE RIGHT DESIGN
We have just presented small area versions of QUAD’s un-
derlying PRNG. The characteristics of these small area de-
signs are summarized in Table 3. The smallest version is di-
rectly targeted at tiny devices such as highly limited RFIDs.
The medium version aims to provide an efficient pseudo-
random generator, and we show that its provable security
feature do not prevent it to perform as well as most of to-
day’s stream ciphers. In the following paragraphs, we review
some state of the art solutions in each of these domains and
explain how QUAD relates to each of them.

Table 3: Various implementation trade-offs
Implementation clocks/it. memory

QUAD low (sec. 3.2) n2(n + 1) ∼ n

QUAD medium (sec. 3.3) n(n + 1)/2 ∼ 4n

5.1 QUAD as an efficient Stream Cipher
Stream ciphers and PRNGs with small footprint have sev-
eral distinct applications but they are of special interest
when power consumption is a bigger constraint than the
throughput. This is often the case for instance for mobile
applications. This paragraph compare our proposals for the
implementation of QUAD with several natural competitors.

Concerning the provable security feature brought by QUAD’s
design, some of the obvious competitors are: the Blum-
Blum-Schub generator, the optimized implementation of the
discrete logarithm generator exposed in [30], and the re-
cently proposed generator based on the small solution RSA
(SSRSA) assumption [41]. The SSRSA based generator out-
performs the discrete logarithm generator, which already
outperforms the Blum-Blum-Schub generator due to its abil-
ity to output more bits for fewer modular exponentiations.
All of them require an internal state of at least 1024 bits
(and much more in practice for a good security level) which
implies that an FPGA implementation is likely to require
more than 10.000 GE. Since we are not aware of any FPGA
implementation for these PRNGs, we only refer to the imple-
mentation in IBM crypto-processor at 447 MHz with 4 MB
of RAM presented in [30], and which achieves a 182 Kbps
throughput. Comparisons between such a specific device
and FPGAs is difficult, especially when the interest is fo-
cused on low area designs.

In order to compare QUAD with other stream ciphers, we

need to discuss the implementation of the key and IV setup
of QUAD. Let us here recall how it works: the internal state
is first set by replicating the key enough time to fill it. Then,
the initialization process goes through the following loop: for
every bit bi of the IV in turn, if bit bi is equal to 1 the internal
state is updated with the n-bit output value from Sit, and
if the bit biis equal to 0, the internal state is updated with
the n-bit output value from Sout. After all the k bits of
the IV have been processed, the state is updated k times by
iterating Sit and without producing any keystream.

Since our smallest implementation of QUAD’s PRNG is
computing one polynomial at a time, we need only one selec-
tor in order to either throw the result of the computation or
store it in the buffer. This buffer will then be used to update
the internal state, depending on the value of the current bit
of the IV. The second implementation of QUAD’s PRNG
is computing in parallel the 2n polynomials, and we then
need 2n extra selectors. In both cases, the number of extra
gates required to implement the key and IV setup is small
with regard to the total gate count required to implement
the PRNG. These implementations of the key and IV setup
are very compact but rather slow. Faster implementations
can obviously be designed when area is not the critical con-
straint.

Table 4: Comparing our results with several other
FPGA implementations [28, 13, 27]. The clocking
frequencies for QUAD are the highest supported by
our development board

Freq. Area Thru. Thru./A.
(MHz) (slice) (Mbps) (Kbps/sl)

Trivium [28] 102 40 102 2550

Grain [28] 105 48 105 2187

QUAD low 267 85 0.016 0.2

Hermes8 [28] 45 190 5.6 29.5

Phelix [28] 30 264 3.26 12.3

AES [27] 67 264 2.2 8.3

Sfinks [28] 37 334 7.4 22.1

QUAD med. 262 406 4.1 10.1

AES [13] 60 522 69 132

We now compare our implementations of QUAD with cur-
rently available FPGA implementations of state of the art
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Figure 7: Ohkubo et al. [39] hash chain based scheme.

streams ciphers, namely some of the best designs from the
eSTREAM project [19]–those are hardware oriented candi-
dates of this project: Grain [29], Trivium [12], Phelix [43],
Sfinks [11], and Hermes8 [35]. The figures for these FPGA
implementations come from the paper [28]. Of course, the
AES may also be used–for instance in counter mode–to pro-
duce pseudo-random sequences, and is often the preferred
choice to implement a PRNG. The AES implementation on
FPGA which seems to best fit our search for compact im-
plementations is the one presented in [13] and [27], and is
included in our comparisons.

Table 4 is sorted by area and shows that our implementation
of QUAD is competitive with both AES implementations
and other stream ciphers.

5.2 QUAD for RFIDs
Several solutions have been proposed to deal with security
in RFIDs, sometimes addressing to some degree the privacy
concerns. For a state of the art survey of these techniques,
the reader should refer to [34]. There are basically three dif-
ferent ways to deal with privacy concerns. A first solution
is to provide a mechanism to “Kill” an RFID so as destroy
it. This is a somewhat extreme solution since it prohibits
the tag and its carrier from taking benefits of any associated
services. There is an intermediate solution where the tag is
temporarily turned off, and might be turn on whenever a
highly occasional service is required, such as after sale sup-
port. A second solution is to somehow change the identifier
returned whenever the tag is queried. There have been nu-
merous proposals along those lines, such as re-encryption
mechanisms, or re-labeling mechanisms to name a few. A
third solution is as follows: as there is no way to prevent
cheap RFID tags from being tampered with, it is desirable
to ensure that, an attacker having opened an RFID tag and
accessed its content, there is no way for him to correlate pre-
vious identifiers emitted by the tag with this content. This
property is called forward secrecy and not only prevents at-
tackers from tracking an RFID tag, but also prevents attack-
ers from obtaining information about this RFID’s life, that
is about any of the past identifications. It will not prevent,
however, an attacker having access to the tag to use it for
himself.

This third solution, originally proposed in [39] by M. Ohkubo,
K. Suzuki, and S. Kinoshita, offers the most interesting kind
of privacy to customers. (In fact, as explained in [5] where a
formal adversarial model is described, the scheme [39] is the
only one to meet the requirements.) The scheme proposed
by [39] uses an initial identifier id as well as two distinct hash
functions, h1 and h2. The internal state s is set to id upon
initialization. Now at each query, the tag outputs h2(s) and
updates its internal state via s← h1(s).

Obviously, this is not an easy task to embed two different

xi−1

Sout

Sit xi

Sout

Sit xi+1

Sout

Sit Sit

Figure 8: Using QUAD along the lines of [39].

hash function designs into an RFID. Moreover, hash func-
tion design is a difficult problem as shown by the recent ad-
vances in hash function cryptanalysis. On the other hand,
the property required by [39] is actually that h1 and h2 are
one-way functions and that the sequence h2(si) is a pseudo-
random sequence: it must be computationally intractable
to correlate its outputs, and computationally intractable to
run backward.

QUAD perfectly fits these requirements and, as such, is a
very good candidate to build forward-secrecy enabled RFIDs.
As a cryptographically secure stream cipher, it provides un-
linkability of outputs deterring any attacker without phys-
ical access to the tag from tracing the RFID’s holder. At
the same time, the one-wayness of the quadratic system Sit
used to update QUAD’s internal state ensure the forward
secrecy: an attacker obtaining access to QUAD’s internal
state is not able to link this information with any identifier
previously issued by the tag. Hence the quadratic system Sit
used to update QUAD’s internal state plays the role of hash
function h1 in Ohkubo, Suzuki, and Kinoshita scheme, while
Sout plays the role of hash function h2.

Finally, RFIDs are sometimes more concerned by the area of
the design than by the throughput of the underlying pseudo-
random generator. In this specific application indeed, one
often only has to generate a short identifier (usually about
160 bits) at each authentication.

6. CONCLUSION
In this paper we discussed several implementations of QUAD.
Our smallest proposal requires 85 slices (2961 GE), which
renders QUAD’s pseudo-random generator the smallest one
in the field of provable security and a very good competitor
to other stream ciphers. Its additional properties makes it
especially attractive in the context of RFIDs. Depending on
the application, it can be useful to consider our second de-
sign, for which the throughput/area ratio is much improved.
As we have shown, QUAD accommodates a wide range of
trade-offs and its provable security makes it a very good
candidate for tailored hardware implementation.
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