
Multi-show Anonymous Credentials
with Encrypted Attributes in the Standard Model

Sébastien Canard, Roch Lescuyer, and Jacques Traoré

Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,roch.lescuyer,jacques.traore}@orange.com

Abstract. Anonymous credential systems allow users to obtain a cer-
tified credential (a driving license, a student card, etc.) from one or-
ganization and then later prove possession of this certified credential
to another party, while minimizing the information given to the latter.
At CANS 2010, Guajardo, Mennink and Schoenmakers have introduced
the concept of anonymous credential schemes with encrypted attributes,
where the attributes to be certified are encrypted and unknown to the
user and/or issuing organization. Their construction is secure in the ran-
dom oracle model and based on blind signatures, which, unfortunately,
restrict the credentials to be used only once (one-show) to remain unlink-
able. In their paper, Guajardo et al. left as an open problem to construct
multi-show credential schemes with encrypted attributes, or to show the
impossibility of such a construction. We here provide a positive answer
to this problem: our multi-show anonymous credential scheme with en-
crypted attributes relies on the non-interactive Groth-Sahai proof system
and the recent work on commuting signatures from Fuchsbauer (Euro-
crypt 2011) and is proven secure in the standard model.

Keywords: Privacy, Anonymous credentials, Encrypted attributes.

1 Introduction

Anonymous credential systems, introduced by Chaum in [12], permit users to
obtain the certification of their attributes by some authorized organizations. In
this context, such a certification is called a “credential”. For example, a university,
as an organization, can deliver credentials on particular attributes (name, birth
date, studies, etc.) to its students in order to certify their status. Such credential
can next be used anonymously by users to prove to a third party the possession
of the certified attributes, while minimizing the information given to this third
party. For example, a legitimate student can prove that she is a student, namely
that she owns a credential certified by a university, without revealing any other
information. She can also prove that her credential attributes satisfy some prop-
erties, for example that she is under 25, without revealing her true age, nor her
name or studies.

A lot of work has been done on anonymous credentials and, currently, there
are mainly two kinds of constructions. The first one is based on the work from

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 194–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Multi-show Anonymous Credentials with Encrypted Attributes 195

Brands [6] and makes use of blind signatures [11]. Such constructions are secure
in the random oracle model and very practical. Unfortunately, the resulting
credentials are “one-show” as they become linkable if they are used several times.
They are implemented by Microsoft in their U-Prove technology [24]. The second
one is due to Camenisch and Lysyanskaya [8,10] and is based on the use of group
signatures [13]. The resulting anonymous credential systems are less efficient than
the Brands’ based ones, but they are “multi-show” since they use the inherent
unlinkability property of group signatures. This technology is implemented by
IBM for their Idemix product [22]. Although the original scheme was secure in the
random oracle model [8,10], recent variants such as [5] are secure in the standard
model. More recent papers have also proposed several variants of anonymous
credentials with additional features, such as the delegation of credentials [4,16],
or revocation capabilities [9,7].

Anonymous Credential with Encrypted Attributes. At CANS 2010, Gua-
jardo, Mennink and Schoenmakers [21] have introduced the concept of anony-
mous credential schemes with encrypted attributes. They argue that, in some
practical scenarios, the user should not (or does not want to) learn the certi-
fied attributes. Anonymous credentials with encrypted attributes can also be
used in the context of secure multi-party computation and in particular for the
millionaires protocol (see [21] for details).

In [21], Guajardo et al. first give the security model for anonymous credential
schemes with encrypted attributes. Such a scheme involves three kinds of par-
ticipants: issuers (or organizations), users and verifiers. It is composed of three
protocols: key generation, credential issuance and verification. The key genera-
tion protocol permits each party to compute their secret and public keys whereas
the issuance protocol allows a user to obtain, from an issuer, credentials on some
encrypted attributes. The idea here is that the user only has access to the at-
tributes in encrypted form. Finally, a verification protocol is played between a
user and a verifier, in which the user proves the possession of a credential on
encrypted attributes (without obtaining them in clear) while the verifier may
possess the decryption key to obtain the plain attributes. The authors also give
some variations where the verifier (and sometimes the issuer) does not learn the
attributes in the clear.

They next propose a practical construction of this new concept. Their scheme
is based on the Brands anonymous credential scheme [6,24] and makes use of
blind signatures. As a result, multiple uses (or multi-shows) of the same creden-
tial makes them, as with Brands’ system, linkable: thus the resulting system is
only “one-show” (a.k.a. “one-use”), as argued by the authors in [21].

The Multi-show Problem. In [21], the authors left as an open problem to
construct multi-show credential schemes with encrypted attributes, or to show
the impossibility of such a construction. In this paper, we provide a positive
answer to this problem by giving a concrete construction.

196 S. Canard, R. Lescuyer, and J. Traoré

The main difficulty is to obtain a system where, after one credential issuance
with an issuer, the user can use the resulting credential several times in an
unlinkable manner: in other words, nobody should be able to know whether two
different verification protocols were played by the same user (using the same
credential) or not. It is well-known [6,8,10] that blind signature based anonymous
credential cannot reach such an unlinkability property and it seems, as argued
in [21], that one may start from [8,10], which makes use of group signatures, that
are by essence, unlinkable.

In a nutshell, a group signature based anonymous credential system works
as follows. During the issuance protocol, the user obtains from the issuer a sig-
nature on her attributes. The verification protocol next consists in proving the
possession of an issuer’s signature on some attributes without revealing the sig-
nature (and thus reaching the unlinkability property) nor the private attributes.
When trying to apply this technique to anonymous credentials with encrypted
attributes, several solutions are conceivable.

– The issuer encrypts the attributes and next signs the resulting ciphertexts.
The user therefore needs to prove the possession of an issuer’s signature on
the ciphertexts, without revealing the signature (which can be written, using
classical notation for proofs of knowledge, Pok(σ : σ = SignI(c))). How-
ever since the ciphertexts will remain unchanged, the unlinkability property
collapses.

– One solution to the above problem would be to randomize the ciphertexts
(provided that the underlying encryption scheme supports such randomiza-
tion techniques). Unfortunately, the issuer’s signature would not be valid on
the resulting ciphertexts.

– One possibility to the above non validity of the given signature is for the
issuer not to give the signature directly, but to prove the possession of such
signature. It follows that the user next has to produce a proof of knowledge of
such a proof of knowledge, which is known to be a meta proof [25]. However,
the result would clearly be impractical.

– Another solution would be to keep the signature on the encrypted attributes.
During a verification protocol, the user would first randomize the original
ciphertext c to obtain c̃ and next prove that she knows a signature on a
randomized version of c̃, without revealing the signature nor the ciphertext
c (such a proof can be written Pok(σ, c : σ = SignI(c) ∧ c̃ = ReRand(c))).
The main problem is that, to the best of our knowledge, it does not exist
a practical instantiation of such a proof, except by using some variants of
commuting signatures [16], as we will do in our construction1.

Our Solution. In this paper, we take a different approach which can be seen as
a mix of the two last above solutions. We make use of the concept of commuting
signature which has recently been introduced by Fuchsbauer [16]. Such signa-
ture schemes allow to use a ComSig procedure which on input one or several

1 Even if the above proof is not exactly the one we will use.

Multi-show Anonymous Credentials with Encrypted Attributes 197

(extractable) commitments on some messages plus a signing secret key, outputs
a(n extractable) commitment on a signature on the committed messages along
with a (Groth-Sahai) proof [20] that the signature on the committed messages
can be recovered from the given commitment, without revealing the signature nor
the committed messages. Fuchsbauer also gives a concrete and efficient construc-
tion of commuting signatures based on automorphic signatures [2,15]. We next
associate a commuting signature to the randomization techniques on extractable
commitments and Groth-Sahai proofs to obtain our multi-show anonymous cre-
dential scheme with encrypted attributes, which is secure in the standard model.

Organization of the Paper. The paper is organized as follows. In Section 2,
we recall the concept and give the model for anonymous credential scheme with
encrypted attributes in the multi-show setting. In Section 3, we give some use-
ful tools, such as extractable commitments, Groth-Sahai proof systems and au-
tomorphic signatures. In particular, we describe an SXDH based Groth-Sahai
proof of equality under different commitment keys (the DLIN version being given
in [18]). Section 4 is devoted to commuting signatures. In this section, we intro-
duce the way to produce a commuting signature on a vector of messages that are
committed using different commitment keys. To the best of our knowledge, this
tool is new and may be of independent interest. Finally, Section 5 describes our
new anonymous credential scheme with encrypted attributes. The above exten-
sion on commuting signatures allows us to extend the work of Guajardo et al.
to the case where the issuer certifies encrypted attributes to possibly different
verifiers.

2 A Model for Anonymous Credential Systems with
Encrypted Attributes

In this section, we recall the definition of encrypted credential schemes as given
in [21]. We slightly differ from the Guajardo et al. model since we need to take
into account the multi-show case.

2.1 Protocols

In an anonymous credential scheme with encrypted attributes, there is an issuer
I who issues credentials on encrypted attributes, a user U who obtains credentials
on some of her attributes she does not know, before anonymously proving the
possession of such credentials, and a verifier V who is able to verify the validity of
credentials and may obtain the plain attributes. The list of certified attributes
are denoted M when they are in plain, and C when they are encrypted. An
anonymous credential with encrypted attributes scheme Π is next composed of
the following procedure, where λ is a security parameter.

– The key generation process is divided into three parts. The first one, denoted
ParGen is played by any designated entity (possibly the issuer I). It takes
as input the security parameter 1λ and outputs some parameters param for

198 S. Canard, R. Lescuyer, and J. Traoré

the whole system. Next, the issuer executes IssGen which on inputs 1λ

and param, outputs skI . Finally, the verifier V uses VerGen to generate
skV . This step finally publishes gpk as well as λ, param and the public keys
related to skI and skV .

– An issuance protocol Issue is played by I and U . It takes as input gpk. The
issuer additionally takes as input skI and either the list M of plain attributes
or the corresponding list C of encrypted attributes. The user always takes
as input C. This protocol outputs for the user a credential cred on the list
C of encrypted attributes related to M. The issuer outputs its view viewIss

of the protocol.
– A verification protocol Verify is played by U and V . It takes as input gpk.

The verifier (resp. the user) additionally takes as input skV (resp. cred and
C). The verifier outputs a bit representing either 1 and optionally a list M
of plain attributes (for acceptance) or 0 (for rejection).

Completeness. Such a scheme should verify the completeness property which
states that for any (gpk, skI , skV) output by the key generation procedures and
related to honest issuer and verifier, the credential cred obtained by U during
Issue will be accepted in the Verify protocol with overwhelming probability.

2.2 Security Properties

In [21], Guajardo et al. have given the security properties for the case of a one-
show anonymous credential scheme with encrypted attributes. We thus need to
modify their security model to reach the multi-show case. We moreover give more
formal definitions for some properties. Let us consider an anonymous credential
with encrypted attributes scheme denoted Π .

Used Oracles. Before giving the security experiments, we first describe the
different oracles that will be used by the adversary. The security of our scheme
is conducted in an adaptive corruption model, where the challenger C generates
public keys for all entities and allows the adversary to get secret keys for some
of them (the corrupted ones). We thus introduce a general key generation proce-
dure, denoted KeyGen which corresponds to the above execution of ParGen,
IssGen and VerGen. This procedure, executed by the challenger, takes as input
1λ and outputs (gpk, skI , skV).

In the following experiments, the adversary can play either the issuer or the
user during the Issue procedure. In the first case, the adversary requests the
ObtainC oracle2 on chosen attributes while in the second case, the requested
oracle is denoted IssueC on attributes chosen by either the adversary or the
challenger. When the role of the issuer is played by the challenger, the set of all
issuer’s views for the Issue protocol is denoted V . Each entry Vi of V includes
the set Mi of certified plain attributes. We use similar notation for the Verify
protocol, with a request to the ShowC when the adversary plays the role of the
verifier and a request to VerifyC otherwise.
2 By convention, the name of the oracle denotes the action executed by the challenger.

Multi-show Anonymous Credentials with Encrypted Attributes 199

Expunf
Π,A(λ);

– (gpk, skI , skV)← KeyGen(1λ);
– (st)← AIssueC,VerifyC,ShowC

g (gpk, skV);
– Verify : (⊥← AU

c (st)), out← CV(skV));
– if out = 0, then return 0;
– if (out = (1, ˜M)∧∃i : Mi = ˜M, return 0;
– return 1.

Expattmask
Π,A (λ);

– b← {0, 1};
– (gpk, skI , skV)←− KeyGen(1λ);
– (M0,M1, st)← AIssueC,VerifyC

g (gpk);
– Issue : (⊥← CI(Mb)), (s̃t← AU

ch(st));
– b′ ← AIssueC,VerifyC

gu (gpk, s̃t);
– return (b = b′).

Expup
Π,A(λ)

– b← {0, 1};
– (gpk, skI , skV)←− KeyGen(1λ);
– (st,C)← AObtainC,ShowC

g (gpk, skI , skV);
– Issue : (st0 ← AI

ch1
(st)), ((cred0)← CU(C));

– Issue : (st1 ← AI
ch2(st0)), ((cred1)← CU (C));

– Verify : (⊥← CU (credb,C)), s̃t← AV
chf

(st1));
– b′ ← AObtainC,ShowC

gu (s̃t);
– return (b = b′).

Exphv-up
Π,A (λ)

– b← {0, 1};
– (gpk, skI , skV)←− KeyGen(1λ);
– (st,C0,C1)← AObtainC,VerifyC

g (gpk, skI);
– if |C0| �= |C1|, then return 0;
– Issue : (st0 ← AI

ch1
(st)), ((cred0)← CU(C0));

– Issue : (st1 ← AI
ch2(st0)), ((cred1)← CU (C1));

– Verify : (⊥← CU (credb,Cb)), s̃t← AV
chf

(st1));
– b′ ← AObtainC,VerifyC

gu (s̃t);
– return (b = b′).

Fig. 1. Security experiments

In the following, a protocol Prot between an entity E0, playing the role of
R0 (of a user, a verifier or an issuer), taking on input i0 and outputting o0 and
an entity E1, playing a role R1, taking on input i1 and outputting o1 is denoted
Prot : (o0 ← ER0

0 (i0)), (o1 ← ER1
1 (i1)).

The different security experiments are next given in Figure 1 while the related
security definitions are given as follows.

Unforgeability. As we are in the multi-show case and do not rely on blind sig-
natures, we cannot use the same definition as Guajardo et al. [21] who ask the ad-
versary to output more credentials than generated by the issuer. In fact, we give
a single definition which embeds both the one-more unforgeability and the blind-
ing invariance unforgeability properties introduced in the original model [21]. In
particular, the blinding invariance unforgeability property states in [21] that for
any attribute list output by the adversary, the number of credentials on this
list does not exceed the number of times a credential has been issued on this

200 S. Canard, R. Lescuyer, and J. Traoré

list and the one-more unforgeability property prevents an adversary from out-
putting K + 1 distinct credentials after having requested only K credentials. In
our setting, this can be simplified by preventing an adversary from being ac-
cepted during a Verify protocol with a set of attributes which has never been
certified by the issuer.

More precisely, our experiment asks the adversary to successfully play a
Verify protocol such that the embedded attributes have never been certi-
fied by the issuer. The unforgeability experiment Expunf

Π,A(1λ) for the adversary
A = (Ag,Ac), with security parameter λ, is given in Figure 1 and an anonymous
credential with encrypted attributes scheme satisfies the unforgeability prop-
erty iff there exists a negligible function ν(λ) such that for any adversary A,
Pr(Expunf

Π,A(1λ) −→ 1) < ν(λ).

Attribute Masking. This property says that no unauthorized party should
learn the encrypted attributes. We here consider, as in [21], the case where only
the user does not learn the plain attributes. Other cases (e.g. attributes not
known by the issuer) can easily be adapted. Contrary to [21], we here provide
a formal security definition, for which the experiment Expattmask

Π,A (λ) is given
in Figure 1. It follows that an anonymous credential with encrypted attributes
scheme satisfies the attribute masking property iff there exists a negligible func-
tion ν(λ) such that for any adversaryA = (Ag,Ach,Agu), Pr

(

Expattmask
Π,A (1λ) −→

1
)

< 1
2 + ν(λ).

User Privacy. Contrary to the definition given in [21], we consider the case of
a multi-show credential. Then, the user privacy should include the possibility for
one single user to use several times the same credential, without being traced.
In fact, there are two cases, depending on the possibility for the adversary to
corrupt (user privacy) or not (honest-verifier user privacy) the verifier. In both
cases, the adversary plays the role of the issuer I and executes two different
Issue protocols with the challenger. Next, one of the two output credential is
used by the challenger during a Verify protocol. If the verifier is corrupted,
this experiment can easily be won by the adversary since the corrupted issuer
can certify two different sets of attributes and the corrupted verifier can easily
check which one is used during the Verify protocol by decrypting the encrypted
attributes. Thus, when the verifier is corrupted, this experiment is only relevant
when the plain attributes are similar in both Issue protocols. For this purpose
(see Expup in Figure 1), the adversary output one single set of encrypted at-
tributes C, which is used twice in both Issue protocols. We do not need this
restriction for the case where the verifier is honest and the adversary thus output
two different encrypted attributes C0 and C1 (see Exphv-up in Figure 1).

Both experiments are given in Figure 1. Next, the scheme satisfies the user
privacy (resp. honest-verifier user privacy) property iff there exists a negligi-
ble function ν(λ) such that for any adversary A = (Ag,Ach1 ,Ach2 ,Achf

,Agu),
Pr

(

Expup
Π,A(1λ) −→ 1

)

< 1
2 + ν(λ) (resp. Pr

(

Exphv-up
Π,A (1λ) −→ 1

)

< 1
2 + ν(λ)).

Multi-show Anonymous Credentials with Encrypted Attributes 201

3 Cryptographic Tools

We here introduce the cryptographic tools we need in the following. This includes
extractable commitment schemes, Groth-Sahai (GS) proofs [20] and automorphic
signatures [2,15].

In the following, a bilinear environment is given by the tuple (p, G1, G2, GT ,
e, g1, g2) where p is a prime number, G1, G2 and GT are groups of order p, g1
(resp. g2) is a generator of G1 (resp. G2), and e : G1 × G2 −→ GT is a pairing
with the non-degeneracy (e(g1, g2) �= 1) and bilinearity (for all u ∈ G1, v ∈ G2

and a, b ∈ Zp, e(ua, vb) = e(u, v)ab) properties. For vectors of group elements,
“�” denotes the component-wise group operation.

As we use the Abe et al. proposal [3] for signing a vector of messages, we
also need an injective mapping 〈.〉 : {1, ..., nmax} → G1 × G2 such that for all
n, n′ ∈ {1, ..., nmax}, 〈n〉 � 〈n′〉 �= (1, 1), where nmax ∈ N is a fixed parameter.
In the following, we consider 〈.〉 : n
→ (g1n, g2

n) since for all reasonably small
n, n′ ∈ {1, ..., nmax} (we consider nmax as small in the following constructions),
we have (g1n+n′

, g2
n+n′

) �= (1, 1).

3.1 Randomizable and Extractable Commitment Schemes

A commitment scheme permits one user to commit to a message, using some
randomness, such that it is possible to further give the message and the ran-
domness to prove that this was truly the committed message. The commitment
becomes extractable when the commit process makes use of a public key which is
related to a secret key allowing the owner of the latter to open any commitment
and retrieve the initially committed message. Finally, the commitment scheme
is said randomizable if it exists a public procedure which permits to random-
ize a given commitment, without obtaining any information about the initially
committed message, and such that it is infeasible to know whether two given
commitments are related to the same message or not. A formal definition of
such a commitment can be found in [20].

SXDH Commitments. In the following, we will use SXDH randomizable and
extractable commitment schemes [20], which can be described as follows.

Key generation. Given a bilinear environment, the extractable keys are α1, α2 ∈
Zp and the public key ck of the commitment schemes is composed of u :=
(u1,u2),v := (v1,v2) where (for t1, t2 ∈ Zp)

u1 := (g1, g1α1),u2 := (g1t1 , g1
α1t1),v1 := (g2, g2α2),v2 := (g2t2 , g2

α2t2).

Commitment. The commitment to a group element X , with randomness ρ =
(ρ1, ρ2) ∈ Z2

p is

c := (c1, c2) = (u11
ρ1 · u21

ρ2 , X · u12
ρ1 · u22

ρ2) if X ∈ G1 and
c := (c1, c2) = (v11ρ1 · v21ρ2 , X · v12ρ1 · v22ρ2) if X ∈ G2.

Such a commitment is in the following denoted SXDHCom(ck, X, ρ).

202 S. Canard, R. Lescuyer, and J. Traoré

Extraction. The extraction retrieves X ∈ G1 (resp. X ∈ G2) by computing
c2 · c−α1

1 (resp. c2 · c−α2
1).

Randomization. Given a commitment c and some fresh randomness ρ′ = (ρ′1, ρ
′
2)

∈ Z2
p, the randomization of c is done by computing

c′ := (c1 · u11
ρ′
1 · u21

ρ′
2 , c2 · u12

ρ′
1 · u22

ρ′
2) if c ∈ G2

1 and
c′ := (c1 · v11ρ′

1 · v21ρ′
2 , c2 · v12ρ′

1 · v22ρ′
2) if c ∈ G2

2.

3.2 (SXDH) Groth-Sahai Proofs

Groth and Sahai have described in [20] a witness indistinguishable proof sys-
tem, for a class of pairing-product equations (PPE for short) over variables
X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2 as

E(X1, . . . , Xm;Y1, . . . , Yn) :
m
∏

i=1

e(Xi, Bi)
n

∏

j=1

e(Aj , Yj)
m
∏

i=1

n
∏

j=1

e(Xi, Yj)γi,j = tτ

defined by elements Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp for i ∈ [1,m], j ∈ [1, n] and
tτ ∈ GT and where the notation X means that the variable X is a secret value.
In this paper, we use the SXDH version of GS proofs. Such a proof is denoted
Prove(ck, E, (X1, . . . , Xm;Y1, . . . , Yn), (r1, . . . , rm; s1, . . . , sm)) where ri, sj ∈
Zp. We refer the reader to e.g. [20,16] for details.

In [4], it has been shown that such proofs can be publicly randomized, in such
a way that it is infeasible to link the original proof to the randomized one. This
procedure is in the following denoted RdProof(ck, E, (ci, r

′
i)

m
i=1, (dj , s

′
j)

n
j=1,

π) where ci, for i ∈ [1,m], denotes a commitment to Xi and dj , for j ∈ [1, n], a
commitment to Yj , π is the proof to be randomized and the r′i, s′j correspond to
the new randomness.

Diffie-Hellman Pairing-Product Equation. In the sequel, we will need sev-
eral times to provide a GS proof with a DH pairing-product equation. This
equation is denoted EDH and, on the values (M,N) ∈ G1 × G2 and where
g1, g2 ∈ G1 ×G2, is given by E(g1,g2)

DH (M,N) : e(M, g2) · e(g1−1, N) = 1.

3.3 GS Proof of Equality under Different Commitment Keys

In the following, we need to prove that two values X1 and X2, committed with
two different keys, are equal. Such GS proof has already been given in [18] for
the DLIN case but we here need it in the SXDH one. Such a proof is in the
following denoted

πeq ← dProveeq((ck, ck′), Eeq, (X1, X2), (r, s, r′, s′)).

When the values X1 and X2 are committed using the same key, the GS proof is
related to the PPE

Eeq(X1, X2) : e(X1, g2) · e(X2, g2
−1) = 1. (1)

Multi-show Anonymous Credentials with Encrypted Attributes 203

Consider now two commitments c1, c2 of X1, X2 under different commitment
keys ck := (u,v) and ck′ := (u′,v′) respectively. We want to construct a witness-
indistinguishable proof system that X1 and X2 satisfy Eeq from c1 and c2. We

have c1 := (u11
r1 · u21

r2 , X1 · u12
r1 · u22

r2) for uniformly chosen r1, r2
$← Zp. If

we fix X2, the proof that the committed value X1 satisfies equation e(X1, g2) =
e(X2, g2) can be reduced to (φ12 := g2

r1 , φ22 := g2
r2) which can be checked3 by

e(c11, g2) = e(u11, φ12) · e(u21, φ22) and (2a)
e(c12, g2) = e(X2, g2) · e(u12, φ12) · e(u22, φ22), (2b)

which gives us the first part of our GS proof.
Regarding now (2a) and (2b) as a set of equations over variables X2, φ21 and

φ22, we use the GS proof system a second time by committing to these new
variables under key u′. Note that as we have already treated the case of c11 and
c12, we consider them as fixed in the second part of the GS proof. This leads us
to apply the proof algorithm on the following equations.

Eeq′1 : e(u11, g2
r1) · e(u21, g2

r2) = e(c11, g2) (3a)

Eeq′2 : e(X2, g2) · e(u12, g2
r1) · e(u22, g2

r2) = e(c12, g2) (3b)

The resulting complete GS proof will be given in the full version of the paper.
Regarding the randomization of such a proof, one need to update commitments
and proofs to the new randomness for the commitment on X1.

3.4 Automorphic Signatures

Automorphic signatures have been introduced in [2,15] as a new signature scheme
where (i) the verification keys lie in the message space, (ii) messages and sig-
natures consist of elements of a bilinear group, and (iii) verification is done
by evaluating a set of pairing-product equations. Automorphic signatures are
used in [16] to construct commuting signatures, where a commuting signature is
concretely a verifiably encrypted automorphic signature. We now described the
instantiation given in [15].

Let (p,G1,G2,GT , e, g1, g2) be a bilinear environment as defined above. We
also need h, k, u ∈ G1. The message space is DH := {(g1m, g2

m) | m ∈ Zp}. The
secret key is x ∈ Z∗

p and the related public verification key is vk := (X,Y) =
(g1x, g2

x). The signature of a message (M,N) ∈ DH is done by picking c, r ∈ Zp

at random and computing

σ :=
(

A :=
(

h ·M · kr
) 1

x+c , B := uc, D := g2
c, R := g1

r, S := g2
r
)

.

A signature σ = (A,B,D,R, S) on a message (M,N) ∈ DH is valid iff e(A, Y ·
D) = e(h ·M, g2) · e(k, S), e(B, g2) = e(u,D) and e(R, g2) = e(g1, S). Details
can be found in [15,16].
3 As explained in Section 6.1 of the full version of [20], two group elements are enough

for such a proof.

204 S. Canard, R. Lescuyer, and J. Traoré

4 Commuting Signatures and Some New Extensions

We here introduce commuting signatures and some extensions which are of in-
dependent interest. In our main scheme, we need to sign a vector of messages
while individual messages can be committed using different commitment extrac-
tion keys. To the best of our knowledge, this description is new and we here give
a general way to treat such a case.

4.1 Additional Commitments

Fuchsbauer [16], when constructing commuting signatures, makes use of com-
mitment on Diffie-Hellman (DH) tuples which are messages signed by the auto-
morphic signature scheme introduced above.

Commitment on Diffie-Hellman Tuples. Let k ∈ G1. A commitment on a
DH tuple (M,N) takes as input some randomness (t, μ, ν, ρ, σ). It first computes
(P,Q) = (g1t, g2

t) and U = M ·kt. It next computes SXDH commitments cM =
SXDHCom(ck,M, μ), cN = SXDHCom(ck, N, ν), cP = SXDHCom(ck, P, ρ)
and cQ = SXDHCom(ck, Q, σ). Finally, it executes the SXDH GS proofs πM =
Prove(ck, E(g1,g2)

DH , (M,N), (μ, ν)), πP = Prove(ck, E(g1,g2)
DH , (P,Q), (ρ, σ)) and

πU = Prove(ck, EU , (M,Q), (μ, σ)) where

EU (M,Q) : e(k−1, Q) · e(M, g2
−1) = e(U, g2)−1

The commitment on (M,N) is C = CommitDH(ck, (M,N), (t, μ, ν, ρ, σ)) =
(cM , cN , πM , cP , cQ, πP , U, πU). Such a commitment is randomizable [16] using
the randomization techniques for SXDH commitments and GS proofs.

More Simple Commitment on DH Tuples. Before producing a commuting
signature on a message (M,N), it is necessary to produce such a commitment
on the message. In some other cases, we need to produce a commitment on
a DH tuple but without any relation with the execution of a commuting sig-
nature on the underlying message. In this case, we do not need to make so a
complicated commitment on a DH tuple. In fact, the values P and Q are in
this case not necessary (see [16] for details). The above commitment, denoted
CommitDH−(ck, (M,N), (μ, ν)) is thus reduced to the values (cM , cN , πM).

Commitment to an Automorphic Signature When the Message Is
Known But Committed. An automorphic signature (see [15] and Section 3.4)
can be committed as follows, when the signed message (M,N) is known4 but
committed as a DH tuple: CommitDH(ck, (M,N), (μ, ν)).

Let σ = (A,B,D,R, S) be an automorphic signature on the message (M,N).
A commitment on a signature corresponds to (cσ, πσ) = ((cA, cB, cD, cR, cS),
(πA, πB, πR)) where cX corresponds to SXDHCom(ck, X, αX) (for X ∈ {A,
B, D, R, S}) and where πA = Prove(ck, EA, (A,αA), (M,μ), (D,αD), (S, αS)),
4 The case where the message is not known is different, see [16].

Multi-show Anonymous Credentials with Encrypted Attributes 205

πB = Prove(ck, E(u,g2)
DH , (B,αB), (D,αD)) and finally πR ← Prove(ck,E(g1,g2)

DH ,
(R,αR), (S, αS)) with

EA(A,M,D, S) : e(k−1, S) · e(A, Y) · e(M, g2
−1) · e(A,D) = e(h, g2).

In the following, such a procedure is denoted CommitSign(ck, vk, (M,N), σ,
(μ, ν, αA, αB, αD, αR, αS)).

Commitment to an Automorphic Signature When the Message Is
Known But not Committed. The case where the message (M,N) is pub-
licly known (and thus not committed) can be simplified since the equation EA

becomes

EA(A,M,D, S) : e(k−1, S) · e(A, Y) · e(A,D) = e(h ·M, g2).

The rest of the procedure is done similarly and the result is CommitSign−(ck,
vk, (M,N), σ, (μ, ν, αA, αB, αD, αR, αS)) in the following.

4.2 Simple Commuting Signature: One Committed Message and
One Commitment Key

We now recall the SigCom algorithms to sign a DH tuple committed using
the above commitment scheme for DH tuples as described in [16]. The secret
signing key is sk = x ∈ Z∗

p and the corresponding public key is the DH tuple
vk = (X = g1

x, Y = g2
x), as for an automorphic signature. The signature of

a DH commitment C = (cM , cN , πM , cP , cQ, πP , U , πU) on (M,N) is done as
follows (see [16] for details).

– The signer first picks fresh random values c, r $← Zp and α, β, δ, ρ′, σ′ $← Z2
p.

– She next computes an automorphic signature (see [2,15] and Section 3.4)

A = (h · U · kr)
1

x+c , B = uc, D = g2
c, R = g1

r and S = g2
r.

– She also computes the SXDH commitments cA = SXDHCom(ck, A, α),
cB = SXDHCom(ck, B, β), cD = SXDHCom(ck, D, δ), cR = cP �
SXDHCom(ck, R, ρ′) and cS = cQ � SXDHCom(ck, S, σ′).

– She makes the GS proofs: π′
A := πU �Prove(ck, EA† , (A,D), (α, δ)), πA :=

RdProof(ck, EA, (cA, 0), (cM , 0), (cD, 0), (cS , σ
′), π′

A), πB = Prove(ck,
EDH, (B,D), (β, δ)) and πR := RdProof(ck, ER, (cR, ρ

′), (cS , σ
′), πP)

where

EA(A,M,D, S) : e(k−1, S) · e(A, Y) · e(M, g2
−1) · e(A,D) = e(h, g2)

EA†(A,D) : e(A, Y) · e(A,D) = 1
EB(B,D) : e(u−1, D) · e(B, g2) = 1
ER(R,S) : e(g1−1, S) · e(R, g2) = 1

The PPE EA† is not truly verified but is necessary to produce the GS proof on EA

(see [16]). The signature is Σ :=
(

cΣ = (cA, cB , cD, cR, cS), πΣ = (πA, πB , πR)
)

.

206 S. Canard, R. Lescuyer, and J. Traoré

4.3 Vector of Committed Messages and One Commitment Key

In our anonymous credential scheme with encrypted attributes, we need to sign
several messages at the same time. For this purpose, we need to adapt the above
commuting signature, which can easily be done by using the recent technique
of [3] and [17]. On input a signing key x and a vector (C1, . . . , Cn) of commit-
ments to the DH tuples (M1, N1), . . . , (Mn, Nn), the whole procedure works as
follows. Let nmax ∈ N be the maximum number of messages we can sign together
and let sk = x ∈ Z∗

p be the used secret signing key, related to the public key
vk = (X = g1

x, Y = g2
x).

1. Run the signing key generation n+1 times to get (vki = (Xi, Yi), ski = xi)n
i=0,

where ski ∈ Z
∗
p.

2. Compute the following automorphic signatures (see Section 3.4): Γ0 on vk0

under sk and Δ0 on 〈n〉 (as defined at the beginning of Section 3) under
sk0. The message vk0 is next committed using CommitDH− to obtain cvk0 .
Finally, the signatures Γ0 and Δ0 are also committed using the procedures
CommitSign (resp. CommitSign− since 〈n〉 is not committed), and obtain
(cΓ0 , πΓ0) (resp. (cΔ0 , πΔ0)).

3. Executes n times the following: produce an automorphic signature Γi on vki

under sk0 and a signature Δi on vki � 〈i〉 under sk0. In addition, commit
to each message and each signature. Again, for i ∈ [1, n], the message vki is
committed using CommitDH− to obtain cvki

. The signatures Γi and Δi are
also committed using CommitSign (this time, the message vki�〈i〉 related
to Δi is not totally known), and obtain (cΓi , πΓi) and (cΔi , πΔi) respectively.

4. Executes n times the SigCom procedure for a single message (see Section 4.2
above). The i-th execution takes as inputs the commitment Ci and the re-
lated signing key ski and outputs a commuting signature Σi = (cΣi , πΣi).

5. Commit to all public keys vki as cvki = (cXi = SXDHCom(ck, Xi, ζi), cYi =
SXDHCom(ck, Yi, ψi)) and πXi = Prove(ck, E(g1,g2)

DH , (Xi, ζi), (Yi, ψi)).
6. As the above signatures Σi are valid under the plain public keys vki, we

need to use next the AdPrCK procedure5 [16] to adapt Σi so that it
is valid under the public keys which are committed in the cvki

’s. Given
Σi = (cAi , cBi , cDi , cRi , cSi , πAi , πBi , πRi), the resulting commuting signa-
ture is next Σ′

i = (cAi , cBi , cDi , cRi , cSi , π
′
Ai
, πBi , πRi) where the proof π′

Ai

= RdProof(ck, EÂ, (cAi , 0), (cMi , 0), (cSi , 0), (SXDHCom(ck, Yi, 0), ψi),
(cAi , 0), πAi), with

EÂ(A,M,S, Y,D) : e(k−1, S) · e(A, Y) · e(M, g2
−1) · e(A,D) = e(h, g2).

The whole commuting signature on the vector
(

(M1, N1), . . . , (Mn, Nn)
)

is finally
Σ =

(

(cvki
, cΓi ,cΔi ,πvki

, πΓi , πΔi)n
i=0, (Σ

′
i)

n
i=1

)

.

5 The AdPrCK procedure (Adapt Proof when Committing to the Key) allows to
adapt proofs when committing or decommitting to the verification key.

Multi-show Anonymous Credentials with Encrypted Attributes 207

4.4 Vector of Committed Messages and Several Commitment Keys

We now introduce the way we will use such signatures in our anonymous cre-
dential scheme with encrypted attributes. To the best of our knowledge, this
procedure is new and may be of independent interest.

We assume having the DH tuple commitments (C1, . . . , Cn) on the messages
(M1, N1), . . . , (Mn, Nn) under possibly several commitment keys (ck1, . . . , ckn),
using the randomness (μ1, ν1), . . . , (μn, νn). We use a commuting signature with
the commitment key denoted ck and the secret signing key sk = x.

The idea is to use the above procedure. We commit to each message using the
same commitment key and prove that the committed values are equals, using
our new procedure given in Section 3.3. More precisely, we have the following.

1. For all i ∈ [1, n], produce a DH tuple commitment on (Mi, Ni) using ck,
which outputs C(ck)

i = CommitDH(ck, (Mi, Ni), (μi, νi)).
2. For all i ∈ [1, n], produce a GS proof of equality under different commitment

keys (see Section 3.3): πeqi
= dProveeq((ck, cki), Eeq, (C(ck)

i , Ci), (μ(ck)
i ,

ν
(ck)
i , μi, νi)).

3. Compute the commuting signature, using the secret key x, for the vector of
messages (C(ck)

1 , . . . , C
(ck)
n) on the single commitment key ck, as described in

Section 4.3 just above. This procedure outputs Σ.

In this procedure, we remark that the two first steps are not necessarily executed
by one single actor. If the messages are known by different parties, each one can
execute these two first procedures and the owner of the signing key can next
produce the commuting signature.

Note that not all the elements need to be hidden. In particular, thanks to the
homomorphic properties of the SDXH commitment, there is no need to commit
to vki � 〈i〉 once vki is already committed. The proofs of validity are done w.r.t.
the same commitment cvki

. Furthermore, 〈n〉 must stay in clear, since the length
of the vector has to be checkable.

Security Considerations. Regarding the security of the above constructions,
we first note that signatures on vector of committed messages have the same
probability distribution as directly generated signatures on vector elements.
Then the reduction from [3] is adapted to the unforgeability notion of commuting
signatures. An adversary, given an access to an oracle which signs committed val-
ues, is not able to forge committed signatures on values that were not queried to
the oracle in a committed form (thanks to the simulation algorithm, as in [16]).
Thus, from a forgery on a vector of committed messages, we extract a forgery
on the underlying commuting signature scheme with non-negligible probability.

4.5 Commuting Signatures in Privacy Enhancing Cryptography

In this paper, we mainly focus on anonymous credential systems as described and
used in [12,8,21]. It exists in the literature several related cryptographic tools
which also aims at preserving the privacy of consumers with close methods and

208 S. Canard, R. Lescuyer, and J. Traoré

problems. This is for example the case for group [13], blind [11] and traceable [23]
signatures.

Commuting signatures have been introduced in [16] and the existing construc-
tion is based on automorphic signatures [2,15]. Automorphic signatures, as said
in [2,15], permits to efficiently create blind signatures. It is also possible to give a
more efficient variant of Groth’s group signature scheme [19] by using automor-
phic signatures instead of certified signatures. For traceable signatures, recent
papers [14,1] have also proposed variants of traceable signature, also using auto-
morphic signatures. In particular, the signature confirmation/denial [1] and the
efficient tracing [14] techniques can be incorporated into traditional anonymous
credential (and related tools) systems.

In our case, this is slightly different since automorphic signatures are not
enough. In fact, if commuting signatures can, in most cases, be used instead of
automorphic signatures (even if the result is obviously less efficient), the con-
trary is false. As for delegatable anonymous credentials [4], we need at the same
time (i) a signature process on a message which is not known by the signer (or
the receiver in our case) and (ii) a process where a unique signature is used
several times while being untraceable, even for the signer. This is exactly the
aim of commuting signatures, as explained in [16], since signing and encrypt-
ing/commuting commute. The fact that a unique signature can be used several
times, using the randomization techniques of commitment schemes and Groth-
Sahai proofs, is what permits our scheme to be multi-show, while this was not
the case for the Guajardo et al. construction [21] since they make use of blind
signatures.

5 A Multi-show Anonymous Credential Scheme with
Encrypted Attributes

We have now introduced all the elements we need to describe our multi-show
anonymous credential scheme with encrypted attributes. We first sketch an
overview before giving details and security arguments.

5.1 Overview of Our Solution

We want to design an anonymous credential scheme with encrypted attributes.
We first take as a basis the work given on non-interactive anonymous creden-
tial schemes by Belenkiy et al. in [5], and later refined by Fuchsbauer [16] by
using commuting signatures. To introduce the property of encrypted attributes,
we make use of extractable commitments, arguing that a perfectly binding ex-
tractable committed value exactly corresponds to a ciphertext of a public key
encryption scheme.

Our scheme next works as follows. In a nutshell, the issuance protocol consists
for the issuer in producing a commuting signature on the attributes, using the

Multi-show Anonymous Credentials with Encrypted Attributes 209

commitment key of the verifier to encrypt/commit to the attributes. The result-
ing commuting signature is next given to the user who can play a verification
protocol with the verifier by randomizing the commuting signature, which is com-
posed of commitments and Groth-Sahai proofs. As two different randomizations
of the same inputs are indistinguishable, we obtain the multi-show property, as
expected.

Following [21], the user, during the issuance protocol, generates a random
secret α for the issued credential cred. This secret (or the related public key)
should be signed by the issuer in the above commuting signature. However, the
verifier should not be able to obtain it and we thus need to use a commitment
key which is different from the verifier’s one for this particular message α. For
this purpose, we use the mechanism proposed in Section 4.4, which permits to
produce a commuting signature on messages committed with possibly different
commitment keys. The other commitment extraction key is related to the verifier
(who need to be known at the issuing process, as for the scheme in [21]) and the
related commitment scheme is used by the issuer to commit to the attributes.

During the verification process, the user should prove the knowledge of the
secret α, without revealing it, for obvious reasons. The GS proof system does
not permit such a proof of knowledge and we need to do something more. In
fact, we use the powerfulness of automorphic signatures [2,15] for which the
verification keys lie in the message space. Thus, during the verification process,
the user produces an automorphic signature on some plain message related to
the context (or sent by the verifier), using the committed secret key α.

Finally, as we can use the general commuting signature scheme for a vector
of committed messages and several commitment keys, we are also able to deal
with several verifiers. Thus, the issuance protocol permits the issuer to create
a credential with several encrypted attributes, for potentially several different
verifiers, which is a new property not proposed in [21]. More formally, we give
the following construction.

5.2 Algorithms and Protocols

Following [21], we outline the case where the issuer encrypts attributes for veri-
fiers. Thus, the plain attributes remain hidden to the user. Our scheme is easily
adaptable to other policies, giving the extraction key and making the extractable
commitment accordingly.

Key Generation. Our scheme works on a bilinear environment (p, G1, G2,
GT , e, g1, g2) as defined in Section 3. We also need randomly picked generators
h, k, u, v ∈ G1. As shown above (see Section 4.4), we need a commitment key for
the commuting signature. For this purpose, we generate a commitment public
key ck := (u,v), while the corresponding secret key is known by nobody6. We
finally set grp = (p,G1,G2,GT , e, g1, h, k, u, v, g2, ck)

6 As we use Groth-Sahai proofs, we are in the common reference string model.

210 S. Canard, R. Lescuyer, and J. Traoré

Issuer key generation. Each issuer generates her own keys. For this purpose, she
picks at random xI ∈ Z∗

p as her secret key skI and computes the public key as
a DH tuple: pkI = (XI , YI) = (g1xI , g2

xI).

Verifier key generation. Each verifier also generates her keys. As said before,
these corresponds to the ones for an SXDH commitment scheme: the secret key
is (αV1 , αV2) ∈ (Z∗

p)
2 and the corresponding public key is ckV := (uV ,vV) as

defined in Section 3.1.

Issuance Protocol. This protocol is played by an issuer with keys (skI , pkI)
and is related to the attributes denoted (m1, . . . ,mN), such that each mi =
(Mi, Ni). We here consider that each attribute mi is “encrypted” for the verifier
i with public key ckVi (with possibly several times the same verifier), which is
not proposed in [21].

We first assume that some entity (possibly the issuer itself) first encrypts the
plain attributes (m1, . . . ,mN). For this purpose, it produces, for all i ∈ [1, N], a
commitment Ci, using ckVi , on each (Mi, Ni) and using the DH tuple commit-
ment scheme described in Section 4.1: ci := CommitDH(ckVi , (Mi, Ni), (μi, νi)).
These commitments are next given on input to both the issuer (if necessary) and
the user. The issuance protocol is next divided into several steps.

User Generate an automorphic signing secret key α ∈ Z∗
p. The pair (X =

g1
α, Y = g2

α) corresponds to the public verification key of an automorphic
signature scheme related to α and is also used to commit to α. Thus, the
user next commits to α, using the commitment key ck of the commuting
signature scheme: C0 = CommitDH(ck, (X,Y), (ξ, ξ′)). The result is sent
to the issuer.

Issuer The issuer next produces a commuting signature on all the commitments
C0, C1, · · · , CN , using the algorithm given in Section 4.4, the secret key
skI as the signing secret key, and the key ck for the related commitment
scheme. As C0 is already committed using ck, it is not necessary to commit
again to it and produce a GS proof of equality. This is however necessary
for the other Ci’s.
The resulting signature Σ is sent to the user, together with the Ci’s.

User Verify the commuting signature Σ (see [16]) and save the Ci’s and the
credential ((α, ξ, ξ′), cred := Σ).

Verification Protocol. Let U be a user having beforehand carried out an is-
suance protocol with an issuer, and thus having a credential ((α, ξ, ξ′), cred)
as defined above, and on some encrypted/committed attributes (C1, . . . , CN).
She now interacts with a verifier having access to a decryption/extraction key
(αV1 , αV2) related to one commitment key ckV used to create cred. For the sake
of simplicity, we assume that ckV = ckV1 in the above issuance protocol.

User Randomize her credential cred and commitments Ci’s (to obtain the C̃i’s)
by using the randomization technique of commuting signatures [16].

Multi-show Anonymous Credentials with Encrypted Attributes 211

The new commuting signature is Σ̃. Let (ξ̃, ξ̃′) be the new randomness
associated to C̃0 and α. User U produces7 a signature σ on some fresh
message related to the context8 (or sent by V), using the secret key α.
Let us recall that α is related to (X,Y) := (g1α, g2

α) and that (X,Y) is
committed in C̃0. The fresh message is hashed to m ∈ Zp and mapped
to (M,N) := (g1m, g2

m). User produces an automorphic signature (see
Section 3.4) σ := (A,B,D,R, S) ← Sign(α, (M,N)) and proves that the
signature σ is valid under the verification key committed in C̃0 by comput-
ing π ← Prove(ck, EY , (X,Y), (ξ̃, ξ̃′)) with

EY (Y) : e(A, Y ·D) = e(h ·M, g2) · e(k, S).

She next sends to the verifier Σ̃, π and σ.
Verifier The verifier checks the commuting signature Σ̃, the proof π and the

signature σ. She is next able to use her secret key (αV1,1 , αV1,2) to extract
the attribute (M1, N1) committed in C1 (see Section 3.1).

Remark 1. The verifier retrieves a plain attribute as a DH tuple. The way for her
to retrieve an understandable attribute can be treated by either considering bits
(as done in [21]), or very small messages (to test all possibilities) or (for bigger
messages) to publish a cross-reference table between understandable messages
and corresponding DH tuples.

Regarding the security of our new construction, we give the following theorem,
while the assumptions are given in Appendix A and the proof will be given in
the full version of the paper.

Theorem 1. Our anonymous credential scheme with encrypted attributes en-
sures the unforgeability, attribute masking and (honest-verifier) user privacy
properties under the q-ADHSDH, the AWFCDH and the SXDH assumptions
in (G1,G2).

Acknowledgments. This work has been supported by the French Agence Na-
tionale de la Recherche under the PACE 07 TCOM Project, and by the Euro-
pean Commission through the ICT Program under Contract ICT-2007-216676
ECRYPT II. We are also grateful to Georg Fuchsbauer for his suggestions of
improvement on Section 4.3, to Sherman Chow for his help on this final version
and to anonymous referees for their valuable comments.

References

1. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-Trapdoor Anony-
mous Tags For traceable Signatures. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011.
LNCS, vol. 6715, pp. 183–200. Springer, Heidelberg (2011)

7 This additional signature is added in order to prevent credentials sharing. This aspect
is not taken into account in the model. To adopt an all-or-nothing policy, each α
contained in each credential may be the same value, and this value is a user secret
necessary to prove possession of a credential.

8 Like the concatenation of the current time and the verifier public key.

212 S. Canard, R. Lescuyer, and J. Traoré

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Abe, M., Haralambiev, K., Ohkubo, M.: Efficient Message Space Extension for
Automorphic Signatures. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I.
(eds.) ISC 2010. LNCS, vol. 6531, pp. 319–330. Springer, Heidelberg (2011)

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009),
http://eprint.iacr.org/2008/428

5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-Signatures and Nonin-
teractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008), http://eprint.iacr.org/2007/384

6. Brands, S.: Rethinking PKI and digital certificates - building in privacy. PhD thesis,
Eindhoven Institute of Technology (1999)

7. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

8. Camenisch, J.L., Lysyanskaya, A.: An Efficient System for Non-Transferable
Anonymous Credentials with Optional Anonymity Revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg
(2001)

9. Camenisch, J.L., Lysyanskaya, A.: Dynamic Accumulators and Application to Ef-
ficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

10. Camenisch, J.L., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

11. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp.
199–203 (1983)

12. Chaum, D., Evertse, J.-H.: A Secure and Privacy-Protecting Protocol for Trans-
mitting Personal Information Between Organizations. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 118–167. Springer, Heidelberg (1987)

13. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

14. Chow, S.S.M.: Real Traceable Signatures. In: Jacobson Jr., M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer,
Heidelberg (2009)

15. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009), http://eprint.iacr.org/

16. Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011)

17. Fuchsbauer, G.: Personal Communication (2011)
18. Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable Constant-Size Fair E-

Cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 226–247. Springer, Heidelberg (2009)

19. Groth, J.: Fully Anonymous Group Signatures without Random Oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

http://eprint.iacr.org/2008/428
http://eprint.iacr.org/2007/384
http://eprint.iacr.org/

Multi-show Anonymous Credentials with Encrypted Attributes 213

20. Groth, J., Sahai, A.: Efficient non-Interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

21. Guajardo, J., Mennink, B., Schoenmakers, B.: Anonymous Credential Schemes
with Encrypted Attributes. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.)
CANS 2010. LNCS, vol. 6467, pp. 314–333. Springer, Heidelberg (2010)

22. IBM. Identity mixer - Idemix, http://www.zurich.ibm.com/security/idemix/
23. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C.,

Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004)

24. Microsoft. Microsoft U-Prove, https://connect.microsoft.com/site1188
25. De Santis, A., Yung, M.: Cryptographic Applications of the Non-Interactive

Metaproof and many-Prover Systems. In: Menezes, A., Vanstone, S.A. (eds.)
CRYPTO 1990. LNCS, vol. 537, pp. 366–377. Springer, Heidelberg (1991)

A Used Assumptions

[q-ADHSDH] The q-Asymmetrical Double Hidden Strong Diffie-Hell-
Man Problem. Given (g1, X = g1

x, h, u, g2, Y = g2
x) ∈ G1

4 × G2
2, q − 1

tuples
{

(Ai = (h · g1vi)
1

x+ci , Bi = uci, Di = g2
ci , Vi = g1

vi ,Wi = g2
vi)

}q−1

i=1
for

ci, vi
$← Zp find a new tuple (A,B,D, V,W) such that e(A, Y ·D) = e(h · V, g2),

e(B, g2) = e(u,D) and e(V, g2) = e(g1,W).

[AWFCDH] The Asymmetric Weak Flexible Computational Diffie-
Hellman Problem. Given (g1, g2) ∈ G1 × G2, A = g1

a for a $← Zp, find a
tuple (R,S,M,N) ∈ (G∗

1)
2 × (G∗

2)
2 such that e(A,S) = e(M, g2) e(M, g2) =

e(g1, N) e(R, g2) = e(g1, S), i.e. there exists r ∈ Zp such that (R,S,M,N) =
(g1r, g2

r, g1
ra, g2

ra)

[SXDH] The Symmetric External Diffie-Hellman Problem. Given (g1r,
g1

s, g1t) (resp. (g2r, g2
s, g2t)) for random r, s ∈ Zp (resp. r′, s′ ∈ Zp), decide

whether t = rs mod p or t is uniform in Zp.

For each problem given above, the corresponding assumption states that the
problem is hard in (G1,G2).

http://www.zurich.ibm.com/security/idemix/
https://connect.microsoft.com/site1188

	Multi-show Anonymous Credentials with Encrypted Attributes in the Standard Model
	Introduction
	A Model for Anonymous Credential Systems with Encrypted Attributes
	Protocols
	Security Properties

	Cryptographic Tools
	Randomizable and Extractable Commitment Schemes
	(SXDH) Groth-Sahai Proofs
	GS Proof of Equality under Different Commitment Keys
	Automorphic Signatures

	Commuting Signatures and Some New Extensions
	Additional Commitments
	Simple Commuting Signature: One Committed Message and One Commitment Key
	Vector of Committed Messages and One Commitment Key
	Vector of Committed Messages and Several Commitment Keys
	Commuting Signatures in Privacy Enhancing Cryptography

	A Multi-show Anonymous Credential Scheme with Encrypted Attributes
	Overview of Our Solution
	Algorithms and Protocols

	References

