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Abstract. Sanitizable signature schemes allow a semi-trusted entity to
modify some specific portions of a signed message while keeping a valid
signature of the original off-line signer. In this paper, we give a new secure
sanitizable signature scheme which is, to the best of our knowledge, the
most efficient construction with such a high level of security. We also
enhance the Brzuska et al. model on sanitizable signature schemes by
adding new features. We thus model the way to limit the set of possible
modifications on a single block, the way to force the same modifications
on different admissible blocks, and the way to limit both the number
of modifications of admissible blocks and the number of versions of a
signed message. We finally present two cryptanalysis on proposals for
two of these features due to Klonowski and Lauks at ICISC 2006 and
propose some new practical constructions for two of them.
Keywords. Sanitizable signature, chameleon hash, accumulator scheme.

1 Introduction

Since the appearance of public key cryptography, signature schemes have been
one of the most widely studied cryptographic tool. Among some others, one of
the main security properties a signature scheme should verify is the integrity of
the message. However, in some cases, such as medical applications, secure routing
or content protection [1, 5], it may be necessary for a designated semi-trusted
entity to delete or modify some parts of the signed message.

In this paper, we focus on sanitizable signature schemes (introduced in [1]
and later formalized in [2]) which permits a signer to produce a signature on a
document, which can be further modified, in a limited and controlled fashion,
by a designated semi-trusted “sanitizer”, with no interaction with the original
signer. Moreover, the signature on the resulting message should be verifiable as
a signature from the original signer. On the other hand, the sanitizer should be
able to modify only the sanitizable parts of the message, that is, the parts that
have been stated as modifiable/admissible by the signer.

1.1 Related Work

The first sanitizable signature scheme [1] makes use of chameleon hash func-
tions [8] and this is also the case for most of existing ones. The first problem with
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this construction is the possibility to obtain some new sanitized messages from
two different ones, without the secret key of the sanitizer (i.e. it is forgeable).
Moreover, a judge is unable to decide whether a signature has been sanitized or
not. Thus, according to [2], the scheme is not accountable.

Canard et al. [5] fix both problems, in the context of trapdoor sanitizable
signature, by adding an extra modifiable block corresponding to the whole mes-
sage. The original message is used as a unique identifier to obtain accountability.
However, as the original message is obviously recognizable from a sanitized one,
this scheme is not transparent [2].

In [2], Brzuska et al. propose the first secure scheme (i.e. immutable, trans-
parent and accountable). They propose to add a tag (verifiably and pseudo-
randomly generated by the signer and randomly by the sanitizer) to each modi-
fiable block. Thus, the signer can prove which one she constructed. Unforgeability
(and thus accountability) is reached thanks to the computation of a new tag per
message. This implies to compute a collision for each modifiable block, even if
this block has not been modified. Thus, this solution lacks of efficiency.

Yuen et al.[10] also give a solution in the standard model but without ac-
countability.

At ICISC’06, Klonowski and Lauks propose [7] several extensions of the san-
itization signature paradigm: force the sanitizer to construct less than l versions
of a message, modify at maximum k sanitizable blocks or limit the values avail-
able for some blocks. However neither security model nor proofs are given.

1.2 Our Contribution

In this paper, we provide several contributions to sanitizable signature schemes.
We first extend in Section 4 the Brzuska et al. [2] model (see Section 2) by taking
into account the way to (i) limit block modifications in a set, (ii) secretly force
the same modifications on different admissible blocks (which can be different at
the beginning), (iii) limit the number of admissible blocks modifiable and (iv)
limit the number of versions of a signed message. We also give in Section 3 a
new sanitizable signature scheme without additional features which is, to the
best of our knowledge, the most efficient and secure construction. After that,
we show in Section 5 a cryptanalysis on two proposals for additional features
(ii) and (iii) due to Klonowski and Lauks [7]. Finally, we present in Section 6
practical constructions for the extensions (iii) and (iv) and show how the idea
from Klonowski and Lauks for (i) can be made secure.

2 Initial Model for Sanitizable Signatures

In the following, the size of the message (in bits) is denoted ` and a message is
divided (by the signer) into t blocks. The variable ADM includes, for each block
mi, i ∈ [1, t], the length `i of the corresponding i-th block (thus ` =

∑t
i=1 `i)

and a subset of [1, t] corresponding to the ranks of the blocks modifiables by
the sanitizer (i.e. admissible). The variable MOD is a set of elements of the
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form (i,m′i). A value (i,m′i) ∈ MOD if and only if the i-th block is modified
into m′i during the sanitization. By misuse of notation, we denote i ∈ MOD if
∃m′i/(i,m′i) ∈ MOD. We say that MOD matches ADM if ∀i ∈ MOD, i ∈ ADM.

2.1 Procedures and Correctness

A sanitizable signature scheme SS is composed of the following algorithms (each
of them may output an error ⊥), where λ is a security parameter.

– Setup takes as input 1λ and outputs the parameters param of the system.
In the following, we consider that λ is included into param.

– SigKeyGen (resp. SanKeyGen) on input param outputs the key pair
(pksig, sksig) for the signer (resp (pksan, sksan) for the sanitizer).

– Sign takes as input a message m of length ` divided into t blocks, the secret
key sksig, the public key pksan and the variable ADM. It outputs a sanitizable
signature σ on the message m. In the following, ADM is included into σ.

– Sanitize takes as input a message m, a sanitizable signature σ, the public
key pksig, the secret key sksan and the modifications MOD that the sanitizer
wants to do on m. It outputs a new signature σ′ and message m′.

– Verify permits to verify a signature σ on a message m with the public keys
pksig and pksan. It outputs true if the signature is correct and false otherwise.

– Proof takes as input a signature σ on a given message m, the secret key
sksig, the public key pksan and the set of message-signature pairs she has
produced (mi, σi)i=1,2,··· ,q. It outputs a proof π.

– Judge is a public algorithm which aims at deciding who has produced a
given signature. It takes as input (m, σ), a proof π from Proof and the
public keys pksig and pksan and outputs signer or sanitizer.

First, a sanitizable signature scheme needs to verify some correctness properties:

– Signing correctness says that a signature from Sign with the secret key
from SigKeyGen is accepted with an overwhelming probability by Verify.

– Sanitizing correctness says that a signature from Sanitize from a valid
signature with the secret key from SanKeyGen is accepted with an over-
whelming probability by Verify.

– Proof correctness says that for any sanitized message, the signer is able
to output a proof π, using Proof, such that Judge outputs sanitizer.

2.2 Security Requirements

According to Brzuska et al., a sanitizable signature scheme is secure if it veri-
fies the following security properties. Formal experiments are given in the table
below.

– Immutability. It is not possible for the sanitizer to modify non admissible
blocks of a signed message. In the corresponding experiment, the adversary
impersonates the sanitizer.
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– Transparency. Only the signer and the sanitizer are able to distinguish an
original signature from a sanitized one. During this experiment, the adver-
sary is given access to a Sign/Sanit oracle which on input a bit b outputs
either a sanitized signature if b = 0 (output by Sanitize) or a signed message
if b = 1 (output by Sign).

– Accountability. In case of an argument about the origin of a signature and
a message, the judge is able to correctly settle it.

Immutability: SuccSSimm = Pr[1←− ExpSSimm] where ExpSSimm is as follows

– (pksig, sksig)←− SigKeyGen(1λ)

– (pksan
∗,m∗, σ∗)←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

– Let (mi,ADMi, pksan,i) and σi for i ∈ [1, q] be the queries related to oracle Sign
– return 1 if Verify(m∗, σ∗, pksig, pksan

∗) = true and for all i = 1, 2, · · · , q we have
– pksan

∗ 6= pksan,i or
– ∃ji /∈ ADMi such that m∗[ji] 6= mi[ji]

Transparency: AdvSStrans = Pr[1←− ExpSStrans]− 1/2 where ExpSStrans is as follows

– (pksig, sksig)←− SigKeyGen(1λ)

– (pksan, sksan)←− SanKeyGen(1λ)
– b←− {0, 1}
– b′ ←− ASign(·,sksig,·,·),Sanit(·,·,·,·,sksan),Proof(sksig,·,·,·),Sign/Sanit(·,·,·,sksig,sksan,b)(pksig, pksan)
– return 1 if b′ = b

Sanitizer Accountability: SuccSSsan−acc = Pr[1←− ExpSSsan−acc] where ExpSSsan−acc is as follows

– (pksig, sksig)←− SigKeyGen(1λ)

– (pksan
∗,m∗, σ∗)←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

– Let (mi,ADMi, pksan,i) and σi for i ∈ [1, q] be the queries related to oracle Sign
– π ←− Proof(sksig,m

∗, σ∗,m1, σ1, · · · ,mq, σq, pksan∗)
– return 1 if Verify(m∗, σ∗, pksig, pksan

∗) = true and
– (pksan

∗,m∗) 6= (pksan,i,mi) for all i = 1, · · · , q and
– Judge(m∗, σ∗, pksig, pksan

∗, π) = signer

Signer Accountability: SuccSSsig−acc = Pr[1←− ExpSSsig−acc] where ExpSSsig−acc is as follows

– (pksan, sksan)←− SanKeyGen(1λ)

– (pksig
∗, π∗,m∗, σ∗)←− ASanit(·,·,·,·,sksan)(pksan)

– Let (m′i, σ
′
i) for i = 1, 2, · · · , q be the answers from oracle Sanit.

– return 1 if Verify(m∗, σ∗, pksig
∗, pksan) = true and

– (pk∗sig,m
∗) 6= (pksig,i,m

′
i) for all i = 1, · · · , q and

– Judge(m∗, σ∗, pk∗sig, pksan, π
∗) = sanitizer

2.3 Useful Tools

Signature Schemes. We need a signature scheme S = (KeyGen, Sign,
Verify) using a security parameter λ. The secret key is denoted ssk and the cor-
responding public verification key spk. The verification algorithm outputs true
if the signature is correct and false if not. The used signature scheme needs to
be existentially unforgeable against chosen message attacks (EU-CMA), that is
SuccSEU−CMA is negligible in the security parameter [6].

Chameleon Hash Schemes. We will use a chameleon hash scheme CH =
(Setup,Proceed,Forge) using a security parameter λ. Setup permits the
generation of the key pairs (chpk, chsk) on input 1λ. Proceed takes as input
the chameleon hash public key chpk, a message m and a random r and outputs
the hash value h of the message m. Forge, on input the chameleon hash secret
key chsk, the message m, the random r, the hash value h and a new message m′,
outputs a new random r′ such that h = Proceed(chpk,m′, r′).
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A chameleon hash function is said strong (resp. weak) secure if it is both
uniform (the distribution of the output of Forge are indistinguishable from a
random [8, 5]) and strong (resp. weak) collision resistant (it is impossible to find
a collision (m′, r′) on h = Proceed(chpk,m, r), only having access to h, m, r,
chpk and an oracle Forge (resp. to h, m, r, chpk)). We note SuccCHSCollRes (resp.
SuccCHWCollRes) the success of an adversary against strong (resp. weak) collision
and AdvCHUni the advantage of an adversary against uniformity.

Pseudorandom Generators. We use in the following a pseudorandom genera-
tor PRG mapping λ-bits to 2λ-bits and a pseudorandom function PRF mapping
λ-bits to λ-bits. We note AdvPRGPseudorand and AdvPRFPseudorand the advantages of an
adversary against pseudo-randomness and AdvPRGOneWay the one-wayness of PRG.

Accumulator Schemes. An accumulator scheme [4, 9, 3] Acc permits to ac-
cumulate a large set of objects in a single short value, called the accumulator
and denoted Acc. Such scheme provides evidence that a given object belongs to
the accumulator by producing a witness w related to Acc and x by the relation
Acc = Acc(x,w). We denote x ∈ Acc, or (x,w) ∈ Acc, if x is accumulated in
Acc with the witness w. If someone reveals a value x together with a witness
w, she proves that the value x is truly accumulated in the accumulator Acc iff
Acc(x,w) = Acc. Such scheme is divided into several procedures including the
parameter generation which initializes the parameters, the accumulation phase to
accumulate values in a new accumulator and the witnesses computation phase.
Existing constructions provide the main security property of an accumulator
scheme, named the collision resistant one, which says [9] that this is infeasible
for an adversary, on input an accumulator Acc, to output a value and a witness
that this value is accumulated in Acc, while this is not the case. In the following,
we say that Acc is secure if SuccAcc

CR is negligible in the security parameter.

3 A New Construction in the Initial Model

3.1 High Level Description

Both [5] and [2] are based on Ateniese et al. [1], which works as follows. Let
m = m1‖m2‖ · · · ‖mt be the message to sign and IDm a random unique identifier.

– The Sign procedure consists in executing, for each admissible block mi,
CH.Proceed, with a random ri, to obtain hi. Then, the signer computes
a modified version m̃i of each block as either hi if i ∈ ADM or mi‖i oth-
erwise. Finally, she executes the signature algorithm on the message m̃ =
m̃1‖m̃2‖ · · · ‖m̃t, as s = S.Sign(ssk, IDm||t||pksan||m̃). The final sanitizable
signature σ on the message m is (s,R,ADM) where R = {ri : i ∈ ADM}.

– The Sanitize step from a message m = m1‖m2‖ · · · ‖mt to a message m′ =
m′1‖m′2‖ · · · ‖m′t consists in using CH.Forge to obtain the new r′i for all
i ∈ ADM, so that the value hi (and thus the signature s) is unchanged after
the modification of the block message (mi to m′i).
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This solution has two main problems. First, it is not accountable since a judge
can not decide whether a signature has been sanitized or not. We propose to use
a pseudorandom number TAG, instead of IDm, which is linked to the version of
the message and generated using both a PRG and a PRF [2]. Thus, the signer
can prove that she has correctly computed the tag, while being transparent.

Second, it is forgeable since it is possible to obtain a new sanitization from
two versions of the same message, without chsk. Let m = m1‖m2‖m3‖m4, m2

and m4 are sanitized into m′ = m1‖m′2‖m3‖m′4. We obtain (s, {r′2, r′4},TAG) from
(s, {r2, r4},TAG). Then everyone can obtain (s, {r′2, r4},ADM) on m1‖m′2‖m3‖m4.
We add a final admissible block corresponding to the whole message [5]. As this
block is updated at each version, the attack does not work any more.

3.2 Definition of Procedures

More formally, our sanitizable signature scheme works as follows.

– SigKeyGen. This step consists in executing S.KeyGen to obtain (ssk, spk)
and in choosing randomly a secret key κ in {0, 1}λ for the PRF.

– SanKeyGen. This algorithm executes CH.Setup to obtain (sksan, pksan).
– Sign. First, the signer generates the variable ADM as defined in the model.

Let u be the number of modifiable parts in m. During this step, the signer
generates the tag TAG by computing x = PRF(κ,Nonce) where Nonce ∈
{0, 1}λ, and TAG = PRG(x). In order to compute the chameleon hash func-
tion, she randomly chooses r1, · · · , ru, rc in {0, 1}λ. Then, for each admissible
block, she executes what we call the (public) “reconstruction procedure”,
which takes as input the message m, TAG, the ri’s and the public key pksan.
It is divided into several steps.
1. Compute the values m̃i for each block:

∀i, m̃i =

{
hi = CH.Proceed(pksan,mi||i, ri) if mi ∈ ADM
mi||i else

2. Compute the final block : hc = CH.Proceed(pksan,TAG||m, rc).
After that, the signer signs the message m̃ = m̃1|| · · · ||m̃t||hc||pksan as s =
S.Sign(sksig, m̃). She finally obtains the sanitizable signature σ = (s, TAG,
Nonce, R, ADM) with R = {r1, · · · , ru, rc}. The signature and the message
are added to the signer’s database DB.

– Sanitize. The sanitizer uses the reconstruction procedure to obtain the
hi’s and hc. For all i ∈ MOD, she finds a collision on hi, using sksan.
She computes ∀j ∈ MOD, r′j = CH.Forge(sksan,mj ||j,m′j ||j, hj) and r′c =

CH.Forge(sksan,TAG||m,TAG′||m′, hc), where Nonce′ and TAG′ are random
values. The sanitized signature is σ′ = (s,TAG′,Nonce′,R′,ADM) where the
set R′ = {r′1, · · · , r′u, r′c} (with r′j = rj if j /∈ MOD).

– Verify. The verifier executes the reconstruction procedure as described
above to obtain m̃ = m̃1|| · · · ||m̃t||hc||pksan. She finally returns the output
of S.Verify(pksig, s, m̃).

– Proof. The signer searches in DB an integer i ∈ [1, q] such that

CH.Proceed(pksan,TAG||m, rc) = CH.Proceed(pksan,TAGi||mi, rci) (1)
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with TAGi = PRG(xi) for xi = PRF(κ,Noncei) and m 6= mi. If it exists, it
outputs π = (pksig,TAGi,mi, rci , xi) else, it outputs ⊥.

– Judge. If π = ⊥, then it returns signer. Else, π = {pksig,TAGi,mi, rci , xi}
and the algorithm checks if Equation (1) holds, with m 6= mi and TAGi =
PRG(xi). If so it outputs sanitizer. If not, it outputs signer.

3.3 Security Considerations

Theorem 1. Our scheme is secure if the signature scheme is EU-CMA, PRG
and PRF are pseudo-random and CH is strong secure.

Proof. We prove that our scheme is immutable, transparent and accountable.

– The Immutability is reached thanks to the fact that non-admissible blocks
are directly signed with the EU-CMA signature scheme S. More formally
let ASSImm be an adversary against our scheme which, at the end of the
experiment, outputs a message m∗ and a public key pk∗san.
• It exists m∗j 6= mij for some j 6∈ ADM. We can use ASSImm to break the

EU-CMA property of S. Each time ASSImm queries a sanitizable signature
from the signer, we use the signing oracle of S. At the end, ASSImm outputs
a valid new pair m∗, σ∗. As it exists m∗j 6= mij for some j 6∈ ADM, the
underlying signed message m̃∗ and the corresponding signature s∗ give
us a forge on the signature scheme S.
• pk∗san 6= pksani on all requests. We first recall that the message signed by

the signer is m̃ = m̃1|| · · · ||m̃t||hc||pksan. By assumption, the underlying
signed message m̃∗ is different from all queried m̃i on, at least, its last
part corresponding to pk∗san. All m̃i’s are signed using the signing oracle
while the output signed message is a forge. We have thus broken the
existential unforgeability of S.

As a consequence the probability of success of an adversary against the
immutability of our scheme is SuccSSImm ≤ SuccSEU−CMA.

– The Transparency is satisfied since the outputs of the signature and sani-
tization algorithms are similar, except in the construction of TAG and ri.
• Let us first focus on the ri’s. In this case, the transparency property

results in the distributional property of the chameleon hash function.
During a Sign procedure, the ri for the CH.Proceed algorithm are
chosen at random while during the Sanitize algorithm, the ri’s corre-
sponds to the outputs of CH.Forge. Thus, the probability of success of
the adversary in this case is the same as against the uniformity property
of the chameleon hash function, AdvCHUni.

• Regarding TAG, the signer chooses at each new signature a new pseudo-
random value Nonce and uses it to compute the value TAG thanks to
PRF and PRG. Thus, TAG is indistinguishable from a random value,
under the pseudorandomness of functions PRF and PRG.

As a conclusion, the advantage of an adversary against the transparency is
AdvSSTrans ≤ AdvCHUni +AdvPRGPseudorand +AdvPRFPseudorand.
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– For the Signer-Accountability, there are two possibilities.
1. The adversary uses a collision generated by the sanitizer, and thus suc-

cessfully obtains a value x such that TAG = PRG(x). This is impossible
under the one-wayness of the function PRG.

2. The adversary uses a TAG she has constructed. To win the experiment,
the adversary has to generate a collision on the chameleon hash function,
which can happen with probability SuccCHCollRes.

As a consequence, the probability of success of the adversary ASSsig−Acc is

SuccSSsig−Acc ≤ SuccPRGOneWay + SuccCHSCollRes.
– A successful adversary against the Sanitizer-accountability has to find a

correct collision on a message m, using the Proof algorithm. As m neces-
sary respects ADM, the signature s in σ is necessary a forge of the classical
signature scheme. As a consequence, the probability of success against the
Sanitizer-accountability is SuccSSsan−Acc ≤ SuccSEU−CMA. ut

4 Model for Extended Sanitizable Signatures

4.1 Additional Features for Sanitizable Signatures

In this paper, we study in detail 4 additional features for sanitizable signature,
from which 3 have been introduced in [7]. These restrictions are set by the signer
and must be taken into account by the sanitizer.

– LimitSet: this feature permits the signer to force some admissible blocks of
a signed message to be modified only into a predefined set of sub-messages.
More precisely, during the Sign algorithm the signer may define for each
admissible block i a set Vi of available sub-messages. Then, the sanitizer
must use one element m′i ∈ Vi during her sanitization of this block. For this
purpose, we introduce the set V = {Vi ⊂ {0, 1}`i : i ∈ ADM}. Each Vi defines
the set for the modifications of the block mi. If the signer does not want to
restrict the sanitizer in her modifications of the block mi, then Vi = {0, 1}`i .

– EnforceModif: with this feature, the signer forces the sanitizer to modify
similarly several admissible blocks. If one is modified by the sanitizer during
the Sanitize procedure, she must use the same modification for the other
admissible blocks designated by the signer. We introduce condm = {Si ⊂
[1, 2`] : ∀j ∈ Si, j ∈ ADM and ∀k 6= i, j /∈ Sk}. Each set in condm corresponds
to a set of, at least, two admissible blocks which should be modified similarly.
Note that an admissible block can only belong to one set Si.

– LimitNbModif: the sanitizer should modify less than a number k, fixed by
the signer, out of the |ADM| admissible blocks. If the sanitizer modifies more
than k blocks, one of her secret key becomes available. condk is a condition
simply described by the integer k ∈ [1, |ADM|]. In case this feature is not
chosen by the signer, then k = |ADM|.

– LimitNbSanit: this feature limits the number of versions one sanitizer can
do from an original signed message. If the sanitizer does one extra sanitiza-
tion, one of her secret key becomes available. We here define condl, which
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corresponds to an integer l. If l 6=∞, then the sanitizer can only sanitize the
corresponding signed message l times. If l =∞, then, there is no restriction
on the number of sanitizations the sanitizer can do.

4.2 Modification of the Initial Model

We now modify the model of Brzuska et al. [2] to introduce the above new fea-
tures. We first study the case of the classical procedures for sanitizable signature
schemes Sign and Sanitize (as usual each of them output ⊥ in case of error).

– Sign takes as input a message m of length ` divided into t blocks, the secret
key sksig, the public key pksan and ADM. It outputs a sanitizable signature
σ on the message m and the variables V, condm, condk and condl as defined
above. This procedure may also output some secret data denoted s that
would be needed by the sanitizer. We denote s =⊥ if this is not relevant for
the signer in the scheme. In the following, ADM is included into σ.

– Sanitize takes as input a message m, a signature σ, the keys pksig and sksan,
the modifications MOD and furthermore the variables V, condm, condk and
condl, as defined above, and the secret data s. It outputs a new signature σ′,
the message m′ modified according to the different conditions and variables
V, condm, condk and condl defined by the signer.

Remark 1. Note that the different variables may not be used to verify the signa-
ture. In some cases, it may be necessary to keep these data secret. The verifier
may e.g. not know how many times the sanitizer can sanitize a message. What
is important is to detect a fraud, even if it may be simpler using the value l.

We now consider that the sanitization secret key sksan is divided into two
parts. The first one, usksan, is considered as the user secret key and can be
retrieved in case of fraud. It can be computed during a distinct procedure (e.g.
some kind of UserKeyGen procedure) or included into the SanKeyGen phase.
The second key, ssksan, is used to sanitize messages, as the sanitization secret
key in the initial model. We now introduce the new procedures.

– TestFraud is a public algorithm which on input the public keys pksig,
pksan and a set DB of pairs (message, signature), checks if a fraud has been
done on the number of admissible blocks and/or on the number of versions
of message. It outputs either ⊥ is everything is ok, or usksan and a proof of
guilt π otherwise. We consider that π includes DB .

– VerifyFraud is a public algorithm which on input a proof π and a user
key usksan outputs either 1 if the proof π is valid, and 0 otherwise.

4.3 Relation Between Security Properties

We now focus on the security properties that need to be modified to take into
account the above features. First of all, the accountability and the transparency
properties are not modified by the above additional features. However the oracles
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used in both experiment should be modified in order to consider the additional
input. For example, in the transparency experiment, the Sign/Sanit oracle
generates a sanitized signature for all values of the challenge bit b and this oracle
and the Sign one should be honest together (i.e. they cannot make more than
l sanitizations (for example) in total). Note that regarding the privacy property
(implied by transparency [2]), we need to slightly modify the corresponding
experiment to add in the LoRSanit oracle the choice of the Vi’s: for each
admissible part k ∈ ADM+, both initial and final messages should belong to the
randomly chosen set Vk. Thus, privacy is also induced by transparency in the
extended model. We now concentrate on immutability.

Extended immutability. Let us focus on the two first additional extensions
which modify the immutability property. In the new model, we add two new
conditions to the classical experiment (i) one modifiable part mi is not in the
set of acceptable values for that part (m′i /∈ Vi) or (ii) two admissible blocks
from the same set element Si0 of condm (that is that are forced to be modified
accordingly) are different. Note that we have the following lemma.

Lemma 1. An Extended Immutable signature scheme is Immutable.

Proof. A successful adversary A against the immutability experiment [2] outputs
(pksan

∗,m∗, σ∗) such that Verify(m∗, σ∗, pksig, pksan
∗) = true and for all i =

1, 2, · · · , q either pksan
∗ 6= pksan,i or ∃ji 6∈ ADMi|m∗[ji] 6= mi[ji], so she directly

wins the Extended Immutability experiment above. ut

Extended traceability. We now introduce a new security property which we
call “extended traceability”. This ensures that an adversary is not able to do
more modifications than stated by Sign, or to execute more sanitizations of the
same signed message than the sanitizer is allowed to, without being accused of.

In the corresponding experiment, the adversary outputs several valid pairs
(message, signature) under the same sanitizer public key such that TestFraud,
with as input this set of pairs, detects a fraud i.e. returns a pair (usksan, π). The
adversary wins the game if usksan is not part of the corresponding sanitizer
secret key or if VerifyFraud outputs 0.

Extended Immutability: SuccSSext−imm = Pr[1←− ExpSSext−imm] where ExpSSext−imm is:

– (pksig, sksig)←− SigKeyGen(1λ)

– (pk∗san,m
∗, σ∗, l∗, k∗,V∗)←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

– Let (mi,ADMi, pksan,i) and (σi,Vi, condmi , condki , condli ) for i ∈ [1, q] be the queries and
answers to and from oracle Sign.
– return 1 if Verify(m∗, σ∗, pksig, pk

∗
san) = true and for all i = 1, 2, · · · , q we have

– pk∗san 6= pksan,i or
– ∃ji /∈ ADMi such that m∗[ji] 6= mi[ji] or
– ∃j such that m∗[j] 6∈ V ∗j or

– ∃i0 such that ∃j, j′ ∈ Si0 such that m∗[j] 6= m∗[j′].

Extended Traceability: SuccSSext−tra = Pr[1←− ExpSSext−tra] where ExpSSext−tra is:

– (pksig, sksig)←− SigKeyGen(1λ)

– (pk∗san,DB∗ = {(m∗p, σ
∗
p), p = 1, · · · , n})←− ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)

– If it exists p ∈ [1, n] such that Verify(m∗p, σ
∗
p , pksig, pk

∗
san) = false, then outputs 0

– (usksan, π)←− TestFraud(pksig, pk
∗
san,DB∗)

– return 1 if usksan does not correspond to pk∗san, or
– VerifyFraud(π, usksan) = 0.
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5 Cryptanalysis of Extended Sanitization Scheme

In this section, we review the paper of Klonowski and Lauks [7] and show that
their EnforceModif and LimitNbModif extensions are insecure.

5.1 The EnforceModif Extension

We first recall the proposal in [7]. We assume that the signer signs m = m1‖ · · · ‖mt

with d blocks mi1 , · · · ,mid such that the sanitizer can modify similarly.

– Sign: the signer chooses at random x1, · · · , xt, r and computes, for all i ∈
[1, t], hi = gxi with g a public value. Then, she computes c = hm1

1 · · ·h
mt
t gr

and a classical signature s on c. Finally, the signature σ is (c, r, s, h1, · · · , ht)
and the sanitizer is given a secret value s = xi1 + · · ·+ xid .

– Sanitize: the sanitizer wants to modify the signed message m1‖ · · · ‖mt into
the new one m∗1‖ · · · ‖m∗t , with m = mi1 = · · · = mid and m∗ = m∗i1 = · · · =
m∗id . On input (c, r, s, h1, · · · , ht) and s, the sanitized signature is simply
(c, r∗, s, h1, · · · , ht) where r∗ = r + (m−m∗)s.

– Verify: from the signature σ = (c, r, s, h1, · · · , ht) and the message m =
m1‖ · · · ‖mt, one can verify that c = hm1

1 · · ·h
mt
t gr and that s on c is valid.

In fact, from two different versions, with m and m∗ identically modified, one
can retrieve s and thus sanitize any message. In fact, if these blocks are the
only admissible ones, from the construction of the Sanitize, we have r∗ =
r + (m − m∗)s. As r, m, r∗ and m∗ are included into the signatures or the
messages and m 6= m∗, one can compute s = r−r∗

m∗−m . Thus this scheme is not
accountable.

5.2 The LimitNbModif Extension

The solution proposed in [7] is based on polynomial interpolation: there is exactly
one polynomial of degree at most k going through k + 1 fixed points. Then, the
principle is to define a secret polynomial F of degree k, such that the sanitizer
key usksan = F (0). Each time the sanitizer sanitizes a block, a point of the
polynomial F leaks. Thus, when k + 1 blocks are modified, k + 1 points are
available, the secret polynomial can be interpolated and the sanitizer’s secret key
is retrieved. In [7], the basic sanitizable signature scheme is the one of Ateniese et
al. with a chameleon hash function not resistant to the key exposure attack. For
each modified block during the Sanitize procedure, a point on the polynomial
is chosen as the used key. Thus, as soon as a block is modified, a collision is
computed and the point leaks.

More precisely, their scheme works as follows. Let usksan be the sanitizer
secret key related to upksan = gusksan . During the Sign procedure, the sanitizer
chooses at random k values f1, · · · , fk and constructs the polynomial F (y) =
usksan+f1y+ · · ·+fky

k. She next computes {gi = gfi}i∈[1,k], where g is a public
generator, and sends it to the signer. The signer computes a sanitizable public
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key for each admissible block mi as zi = gF (i) = upksan · gi1 · . . . · gi
k

k . She next
chooses an identifier for the message IDm and a random ri for each admissible
block. She uses the chameleon hash function and computes, for all i, m̃i =
Proceed(zi, m̄i = IDm‖mi‖i, ri) = zm̄ii · gri(= gF (i)·m̄i+ri) if i ∈ ADM and
m̃i = mi‖i otherwise. The signature is σ = (IDm, t, {ri}∀i∈ADM, {zi}∀i∈ADM, s)
with s a classical signature on (IDm‖t‖upksan‖m̃1‖ · · · ‖m̃t).

During the Sanitize algorithm, for each block mj the sanitizer wants to
modify, she uses the secret key F (j) and computes a collision on m̃j . As the
function is weak against the key exposure attack, F (j) necessary leaks. Thus if
she modifies k+1 blocks, k+1 points of F (y) leaks and anybody can find usksan.

Again, this solution is not secure since, after one sanitization, the value F (i)
necessary leaks. As the knowledge of F (i) is enough to construct any collision
on m̃i, one can construct as many other sanitizations as she wants from only one
sanitization: the scheme is not accountable.

6 Constructions in the Extended Model

6.1 The LimitSet Extension

This feature has been nicely solved in [7] by the use of accumulators. It consists
in accumulating all possible modifications for a block into one accumulator. The
sanitizer is given the accumulator, the accumulated values and the corresponding
witnesses to prove that one value is truly accumulated. Then, the accumulator
is signed by the signer as a non admissible part of the message. During the
sanitization process, the sanitizer should have to give the accumulated value,
which is the new message block, and the corresponding witness, so that the
verifier can verify that the modified block is a valid message for the focused
admissible block.

– SigKeyGen. This step executes the SigKeyGen procedure of the initial
scheme, as described in Section 3. We thus obtain (ssk, spk) and a secret key
κ in {0, 1}λ for the PRF. Then it executes the initialisation algorithm of the
chosen accumulator scheme Acc.

– SanKeyGen. This algorithm is identical to the initial SanKeyGen.
– Sign. Let m = m1‖ · · · ‖mt be the message to be signed. The signer first

generates the variable ADM: she decides for each block i ∈ [1, t] whether the
block is admissible or not. There are then two cases:
1. the i-th block is not admissible (i /∈ ADM). The signer sets m̃i = mi‖i.
2. the i-th block is admissible (i ∈ ADM). There are two new cases:

(a) there are no restriction on the value for this block (we say that
i ∈ ADM−). The signer next chooses at random a value denoted
ri ∈ {0, 1}λ and computes m̃i = CH.Proceed(pksan,mi‖i, ri).

(b) the i-th message block should lie in a set of authorized values Vi
defined by the signer (we say that i ∈ ADM+). In this case, the signer
first initializes an empty accumulator Acci and, for each element
ak,i ∈ Vi, she accumulates it in Acci and computes the corresponding
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witness wk,i. The set of all witnesses for the block i is denoted Wi =
{wk,i : k ∈ [1, |Vi|]}. Note that the value mi necessary lies in Vi for
obvious reasons. That is, it exists k0 such that mi = ak0,i. At the
end of this step, the signer defines m̃i = Acci.

In the following, we denote W0 = {wk0,i : i ∈ ADM+} the set of all witnesses
used by the signer for the message m, A = {Acci : i ∈ ADM+}, W = {Wi :
i ∈ ADM+} and R = {ri : i ∈ ADM−}.
The signer generates TAG = PRG(x) where x = PRF(κ,Nonce) with
Nonce ∈ {0, 1}λ. She computes (hc, rc) = CH.Proceed(pksan,TAG||m, rc)
and signs the message m̃ = m̃1|| · · · ||m̃t||hc||pksan as s = S.Sign(sksig, m̃).
Finally, the signature is σ = (s,TAG,Nonce,R∪ {rc},ADM,W0). The set of
authorized values for each admissible block V = {Vi : i ∈ ADM+} and the
corresponding set of all witnesses W (if they are not publicly computable)
are independently sent to the sanitizer.

– Sanitize. The sanitizer wanting to modify the message m to the message
m′ performs the following actions, for each block j ∈ [1, t]:
1. the j-th block is not admissible, the sanitizer does not do anything.
2. the j-th block is admissible. There are two new cases:

(a) if j ∈ ADM−, she computes r′j = CH.Forge(sksan,mj‖j,m′j‖j, hj).
(b) if j ∈ ADM+, the sanitizer checks that the new block message m′j ∈
Vj and finds the corresponding wk0,j in the set of all witnesses.

The sanitizer next setsW ′0 = {wk0,j : j ∈ ADM+} the set of all used witnesses
for the new message m′ and by R′ = {r′i : i ∈ ADM−}.
She next chooses at random Nonce′ and TAG′ and uses sksan to find a collision
on the chameleon hash for the obtained message. That is, she recomputes hc
and computes r′c = CH.Forge(sksan,TAG||m,TAG′||m′, hc). The new sani-
tize signature is finally σ′ = (s,TAG′,Nonce′,R′ ∪ {r′c},ADM,W ′0).

– Verify. The verifier executes the reconstruction procedure. For all i, she
defines m̃i as (i) Acc(mi, wi) if mi ∈ ADM+, (ii) hi if mi ∈ ADM− or (iii) mi||i
otherwise. Then the verifier computes hc = CH.Proceed(pksan,TAG||m, rc)
and verifies whether S.Verify(pksig, s, m̃) returns true or false.

– Proof and Judge are identical to our classical construction (cf. Section 3).

Theorem 2. Our scheme is secure if the signature scheme is EU−CMA, PRG
and PRF are pseudo-random, and CH is strong secure and Acc is secure.

Proof. Our scheme is ext-immutable, transparent, accountable and ext-traceable.

– In the Ext-Immutability experiment, A outputs (pk∗san,m
∗, σ∗, l∗, k∗,V∗).

Either pk∗san 6= pksan,i or ∃ji /∈ ADMi such that m∗[ji] 6= mi[ji]. That cases
lies on the chosen signature EU-CMA property, similarly as in the proof
of Immutability of our classical scheme (cf. Section 3). Or ∃j such that
m∗[j] 6∈ V ∗j . In that case, either m∗[j] has been added to the accumulator

of the i-th block and we can construct an adversary ASEU−CMA against the
EU-CMA property in outputting the forgery on the message m̃∗. Or the
adversary has find a value which has not been accumulated and we are able
to construct an adversary AAcc

CR against the collision resistance of Acc. The
success probability is finally Succset−SSExt−Imm ≤ SuccSEU−CMA + SuccAcc

CR .
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– For the Transparency property, we remark that an original sanitizable
signature is (s,TAG,Nonce,R ∪ {rc},ADM,W0), while a sanitized one is
(s,TAG′,Nonce′,R′∪{r′c},ADM,W ′0). As the used witnesses (in W0 and W ′0)
are constructed in the same way for an original or a sanitized signature,
the transparency property relies on the classical parts of the signature and
the proof is identical to the proof in the classical case. The advantage of an
adversary is Advset−SSTrans ≤ AdvCHUni +AdvPRGPseudorand +AdvPRFPseudorand.

– Both Accountability properties rely on the construction of the last block
of our construction hc: it depends on the construction of TAG and on the
incapability of the signer to obtain collisions on the chameleon hash. As ac-
cumulators are not implied on this part of the protocol, the proof is identical
as in the classical case. Thus, Succset−SSsig−Acc ≤ SuccPRGOneWay+SuccCHSCollRes and

Succset−SSsan−Acc ≤ SuccSEU−CMA. ut

6.2 The LimitNbModif Extension

As in [7], our solution uses polynomial interpolation and a chameleon hash func-
tion CH weak against the key exposure attack. However, contrary to [7], we
use a second secure chameleon hash function CH. Thus, the sanitization phase
on the message mi requires the user to know both {F (i)}i∈MOD (keys for CH )
and the sanitizer secret key sksan (for CH). Thus, the leakage of F (i) does not
compromise the unforgeability any more.

More precisely, let usksan be the sanitizer secret key, related to the public
key upksan = gusksan .

– Sign. The signer executes the signature procedure as for our initial scheme
and obtains ADM, the value m̃, TAG,Nonce and R = {ri}i∈ADM. Then
she randomly chooses R∗ = {r∗i}i∈ADM. Meanwhile, the sanitizer randomly
chooses k values f1, · · · , fk and constructs F (y) = usksan + f1y+ · · ·+ fky

k.
She next computes the set {gi = gfi}i∈[1,k], where g is a public generator,
and sends it to the signer. After that, the signer computes the set {zi}i∈ADM

such that zi = upksan·gi1·. . .·gi
k

k (= gF (i)) and uses each zi as the public key of
CH to hide the corresponding ri: ∀i ∈ ADM, ti = CH .Proceed(zi, ri, r

∗
i ) =

zrii · gr
∗
i (= gF (i)·ri+r∗i ). Finally, she classically signs the concatenation of m̃

and the {ti}i∈ADM: s̄ = S.Sign(sksig, m̃‖ti1‖ · · · ‖ti|ADM|) and obtains the sig-
nature σ̄ = {s̄, TAG,Nonce,R,R∗, {zi}i∈ADM,ADM}.

– Sanitize. The sanitizer computes, for each block mj she wants to modify,
a collision on m̃j thanks to sksan and a collision on tj thanks to F (j).

Remark 2. Note that the Sign process is suppose to be non-interactive. In the
above description, we can imagine than the sanitizer regularely publishes some
gi’s that can be used by the signer when necessary. In some other cases, such
as for content protection [5], the sanitizer is considered as on line during this
process, and thus can compute on line these gi’s.

With this method, the sanitizer can easily modify k blocks. As in [7], if she
modifies k + 1 blocks, k + 1 points of F (y) are available and usksan leaks. But
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in our case, the collision resistance of CH already fixes the message. thus it does
not impact the security of the scheme any more.

Theorem 3. Our scheme is secure if the signature scheme is EU-CMA, PRG
and PRF are pseudo-random, CH (resp. CH) is strong (resp. weak) secure.

Proof. Our scheme is extended immutable, transparent and accountable for the
same reasons than our main scheme. For the ext-traceability there are two cases.
Either, the adversary outputs (pk∗san,DB

∗ = {(m∗p, σ∗p), p = 1, · · · , n}) such that
pk∗san does not correspond to usksan output by TestFraud. In our scheme,
this is checked by TestFraud. So the underlying success probability is 0. Or,
A outputs (pk∗san,DB

∗ = {(m∗p, σ∗p), p = 1, · · · , n}) such that TestFraud de-
tects a fraud (usksan, π) and that VerifyFraud outputs 0. This may happens
either if usksan is not the secret key corresponding to the public key of the san-
itizer, but this has already been studied, or if the polynomial F (y) obtained
through interpolation is such that gF (0) 6= upksan. As only one polynomial of
degree n goes through n+ 1 given point, and considering that the public key is
signed, an adversary able to modify this value can be used to construct an ad-
versary against the EU-CMA of the chosen signature. So the success probability
is SuccSSExt−trans ≤ SuccSEU−CMA. ut

6.3 The LimitNbSanit Extension

In a nutshell, our system is based on a method which has been first proposed for
the e-cash purpose. It consists in using the soundness property of zero-knowledge
proofs of knowledge of a secret. Honest-verifier proofs are three-move protocols:
a commitment t based on random values, a question c and an answer s related
to the above random values, the question and the secret. The soundness of these
constructions ensures that given a single t, if someone is able to provide s and
s′ related to c and c′ s.t. c 6= c′, then it is possible to retrieve the secret.

More precisely, our methodology works as follows. First, we use our main
sanitizable signature scheme described in Section 3. Let usksan be the sanitizer
secret key, related to the public key upksan = gusksan .

– Sign. The sanitizer chooses at random l values a1, · · · , al. She next com-
putes, for all i ∈ [1, l], the value ti = gai , with g a public generator.
Each value ti corresponds to a version number authorized by the signer.
The sanitizer next sends {ti}1≤i≤l to the signer. After that, the signer
chooses two random values α and ρ and constructs its own version num-
ber: t0 = upkρsang

α. Then the signer accumulates all the ti’s (including t0)
into one single accumulator Acc and executes the Sign procedure of our main
sanitizable signature scheme, using ρ as random for the final execution of the
chameleon hash function CH on the whole message, and adding Acc in the fi-
nal classical signature: she obtains σ. The signature is σ̄ = {σ, t0, α,Acc, w0}
with w0 the witness for t0. Finally, the witnesses of the accumulated values
are given to the sanitizer as the secret s.
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– Sanitize. The sanitizer executes the Sanitize procedure of main scheme.
Then she reveals a new ti and its corresponding witness, denoted wi, her
public key upksan and the value αi = ai−ρiusksan with ρi the pseudorandom
value output during the generation of the collision on the whole message.

With this method, the sanitizer can easily use the l different accumulated
values. However, if the sanitizer executes l + 1 times this procedure, she has to
use twice the same accumulated value with her secret key usksan but with two
different random values ρi and ρj . It is thus possible to retrieve usksan.

Theorem 4. Our scheme is secure if the signature scheme is EU-CMA, PRG
and PRF are pseudo-random and CH is strong secure and Acc is secure.

Proof. Our scheme is ext-immutable, transparent and accountable for the same
reasons than our main scheme. The Ext-Traceability implies that A outputs
DB∗ under pk∗san such that TestFraud finds a fraud. In fact, A should either
embed more values in Acc, which breaks the security of Acc, or is able to
output a signature on a wrong accumulator and thus breaks the EU-CMA of the
signature scheme. In conclusion, SuccSSExt−trans ≤ SuccAcc

CR + SuccSEU−CMA. ut
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