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Abstract. This paper describes the addition law for a new form for
elliptic curves over fields of characteristic 2. Specifically, it presents ex-
plicit formulee for adding two different points and for doubling points.
The case of differential point addition (that is, point addition with a
known difference) is also addressed. Finally, this paper presents unified
point addition formulse; i.e., point addition formulee that can be used for
doublings. Applications to cryptographic implementations are discussed.
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1 Introduction

Elliptic curve cryptography, introduced in the mid-eighties [10, 15], is a technol-
ogy of choice for the implementation of secure systems. Its main advantage is
the absence of sub-exponential algorithms to solve the underlying hard problem,
the elliptic curve discrete logarithm problem (ECDLP). Elliptic curve cryptosys-
tems therefore feature smaller key sizes, which results in smaller memory and
processor requirements. They are especially well suited to memory-constrained
devices like smart cards.

Two types of finite fields are mainly used to implement elliptic curve cryp-
tosystems: large prime fields and fields of characteristic 2. This paper focuses
on the binary case. Further, to prevent the so-called MOV reduction [14], only
non-supersingular elliptic curves are considered.

An elliptic curve over a field K is a smooth projective algebraic curve of
genus 1 with a specified K-rational point. More explicitly, when K = Faom, a
(non-supersingular) elliptic curve can be written as the locus in the affine plane
of the Weierstrafl equation

E/pym y? 4+ zy = 2° + asz® + ap (ag # 0)

together with the extra point at infinity O = (0 : 1 : 0). It is well known that
the points on an elliptic curve given by a Weierstrafl equation over any field of
definition form a group under the ‘chord-and-tangent’ addition [19, Chapter I1I].
The identity element is O. The inverse of a point Py = (x0,%0) € E \ {O} is
given by —Py = (xo,y0 + o). Hence, (0,,/ag) is a rational point of order 2.
(Remember that square roots always exist and are unique in characteristic two.)



Now let Py + P> = P3 with P; = (z;,y;) € E\ {O} and Py # —P,. Then

3 =M 4+ A+as+2x; +22 and ys = Mz +x3) + 23 + 11

where n
A= M, if T 7é$2
1+ o
)\:1'1+£, if:vlzxg
1

There are other known models to represent elliptic curves (see e.g. [4,5]).
Having different models at one’s disposal is useful as this gives rise to a differ-
ent arithmetic, with different properties. An expected outcome is of course an
improved efficiency. This can be observed at different levels: speed, memory and
processor requirements, bandwidth, etc. Another possible benefit, which should
not be overlooked, is the ease of implementation. Of particular interest are the
unified and complete addition laws, which reduce the number of cases to han-
dle. Furthermore, this can help to prevent certain attacks, including those based
on side-channel analysis [11] or exceptional procedure attacks [8]. Yet another
application is batch computing [1].

We study in this paper a special model of elliptic curves known as Huff’s
model and generalizations thereof. More precisely, we detail the arithmetic on
an extension of Huff’s model to binary fields, as recently introduced in [9]. Almost
all formulee required for implementing modern discrete-log based cryptographic
protocols with state-of-the-art scalar multiplication algorithms are considered:
addition, doubling, special cases of addition, unified point addition formulse, all
in affine and projective versions, differential point addition. We also present a
generalized form of the curve that allows for more flexibility in choosing the
coefficients —in particular, every ordinary elliptic curve over Fom (m > 4) is
birationally equivalent over Fom to a generalized binary Huff curve.

As a result, we obtain that (generalized) binary Huff curves can even perform
better than binary Edwards curves in some cases, with the only problem that the
unified formulae do not really apply to all cases, and there are exceptional situ-
ations. Nevertheless, we show that one has complete (i.e., fully unified) addition
formule in certain proper subgroups, which can be used for most cryptographic
applications.

The rest of this paper is organized as follows. In the next section, we detail
the group law on binary Huff curves. In Section 3, we provide unified addition
formuleze for doubling and adding points. Section 4 presents differential point
addition formulze. In Section 5, we propose a generalized model for binary Huff
curves. Finally, we conclude the paper in Section 6.

2 Binary Huff Curves

While studying a diophantine problem, Huff introduced a new model for elliptic
curves [7] (see also [18]). Huff’s model was recently revisited in [9]. The case of



fields of odd characteristic is fully covered. For binary fields, an extended model
is also proposed but no details are provided. In this section, we fill the gap. In
particular, we specify the group law on binary Huff curves.

We start with the definition.

Definition 1 ([9]). A binary Huff curve is the set of projective points (X :Y :
Z) € P%(Fam) satisfying the equation

Epy t aX(Y?+YZ+2%) =0V (X’ +XZ+27), (1)
where a,b € F5,. and a # b.

There are three points at infinity satisfying the curve equation, namely (a :
b:0),(1:0:0), and (0:1:0). The affine model corresponding to the binary
Huff curve given by Eq. (1) is

ar(y? +y+1) =by(a* +z+1) .

As stated in [9, §3.4], this curve is birationally equivalent to the Weierstrafl
elliptic curve
v(v+ (a+b)u) = u(u + a?)(u + b?)

under the inverse maps

(z,y) (b(u+a2) M) and (u,v) + (ab M) ) (2)

v > v+(at+b)u Ty’ 2y

The set of points on a binary Huff curve forms a group. The identity element
is o = (0,0). While the above maps are not line-preserving, the group law on
a binary Huff curve satisfies the chord-and-tangent rule. Let {p g be the line
joining points P and Q. This line intersects the curve in a third point (counting
multiplicities) that we denote by P * Q. Let also g , be the line through R :=
PxQ and o. The addition of P and @ is defined as the third point of intersection
of {ro with the curve, that is, P + Q = R * o. The correctness follows by
observing that div(/ro/lp.g) = (R*0)+ (R)+ (0) — (R) — (P) — (Q) ~ 0,
which implies (P) 4+ (Q) ~ (R * 0) + (0).

Point inverse Identity element o is not an inflection point. The inverse of a
point P is therefore not defined as P *o. From the previous description, we have
that —P = P x A, where A = (a%_b, ﬁ_b) is the third point of intersection of
the tangent line at o with the curve.

Another way to get the inverse is to use the birational equivalence with the
Weierstrafl form. Let P = (x1,1) € E be a finite point. Then, whenever defined,

we so obtain —P = (&1, ¢1) with

_ (bt aziy) __ xi(a+ briy)

e a+ bxiyy and b+ axi1y: )
If a+bxiys =0 (e, P = (%42, %)) then —P = (1:0:0). If b+ az1y1 = 0
(e, P = (325, %2)) then —P = (0:1:0).

For the points at infinity, we obtain —(a :b:0) = (a:b:0), —=(1:0:0) =

(C ), and —=(0:1:0) = (GL_H), 248y Observe that (a : b: 0) is of order 2.



Point doubling Here too, the birational equivalence could be used to derive the
doubling formula. The calculation, however, quickly becomes tricky. We instead
directly rely on the geometric interpretation of the addition law.

Let P = (z1,y1) € E be a finite point. The third point of intersection of the
tangent line to the curve at P is S = P x P. Then [2]P = S x 0. After some
algebra, whenever defined, we get [2]P = (x3,y3) with

2 2 2 2
s — (a+b)z*(1+ 1) and y; = (a+b)y; (14 2) i
a(14y1)*(1 + z1y1)

4

b1+ 22+ 2151)? @)

Ifxy =1then 2]P=(1:0:0). Ify; =1then 2]P =(0:1:0). If 2391 =1

(ie., P =(¢,¢7Y) with (2 + ¢+ 1=0) then [2]P = (a: b:0). (Note that (1,1)
is not a point on E.)

Remark 1. Since a solution to (2 4+ (41 = 0 is a non-trivial cubic root of unity,
(¢,¢71) is a rational point if and only the curve is defined over a binary extension
field of even degree (i.e., over Fom with m even). Note also that ({,(~1) is of
order 4.

For the points at infinity, we have [2](a : b:0) = o (since (a:b:0)is of
order 2) and [2](1:0:0) =[2](0:1:0) = A where A

) A (725, 2%)- Indeed,
we have [2](1:0:0) = —[2](*F*, a%b) _(a2(l<)1+b)’ b2(a+b)) (a-l:-b’ +45)- This

can also be seen from div({y0/y) = 2(0) + (A) — (0) — 2(T1) = (0) + (A) —
2(T1) ~ 0 and so [2]T1 = A, where {, , is the tangent line at o, A = 0 * 0 and
Ty = (1:0:0). Similarly, for [2](0: 1 : 0), the result follows from div({s 0/z) =
(0) + (A) — 2(T3) ~ 0, where T, = (0: 1:0).

Dedicated point addition Let P = (z1,y1) and Q = (x2,y2) € E be two
finite points with P # Q. As afore explained, the addition of P and @ is given
by P+ Q = (P % Q) x 0. Then, whenever defined, we obtain P + Q = (x3,y3)
with
_ (@191 + 2210) (1 + 9192) (r1y1 + 22y2) (1 + 2122)
(Y1 +y2) (1 + z1729192) (1 + x2)(1 + zr22y192)

Ifo;=22then P+ Q=(0:1:0).Ify; =y then P+ Q =(1:0:0).
Remark 2. When x; = x9, we can assume that y; # 0 (as otherwise we would
have 1 = 29 = 0 and thus P = Q = 0). We then have (z1,y1) + (xl, y%) =(0:
1:0). Similarly, for z1 # 0, we have (z1,y1) + (wl,yl) (1:0:0).
Suppose now x1 # xq and y; # yo. If x129y1y2 = 1 and z120 = 1 then P+ Q =
2]P 4+ (a:b:0). If zyzoy1y2 = 1 and 2129 # 1 then P+ Q = (a: b:0).

When P = (x1,y;) is finite and @ is at infinity, whenever defined, we have

1 1

(@1,1) + (a:b:0) = <>

1 N
(1 y1)+(1-0~o):( a+briys xl(a+bx1y1)>
(w17y1)+(0;1;o):<

()

and y3 =

y1(b+ax1yr)’ b+ aziy
yi(b+axiy1)  b+ariy
a+bzriyr " xi(a+ briyr)




and similarly when P is at infinity and @ is finite. If x; = 0 or y; = 0 (i.e.,

0
P = o) then (z1,51) + Q = Q. If a4+ bzyyy = 0 (i.e,, P = (%2, %)) then
)

(1,91)+(0:1:0)=(a:b:0). Ifb+ax;y7 =0 (e, P = (aLer,“T‘H’)
(x1,51)+(1:0:0)=(a:b:0).

We also have (a:0:0)+(1:0:0)=(0:1:0), (a:5:0)4+(0:1:0)=(1:

. .0 - S _ (a+b a+b
0:0), and (1:0:0)+(0:1:0) = (=2, =£b),

The correctness of the addition law for the exceptional cases (i.e., when the
addition formula is not defined) is easily verified. We start with the points at

infinity. As before, define A = (aLer’ a%rb), T1=(1:0:0),and T, = (0:1:0).

Define also T = (a : b : 0). From div(z) = (o) + (T2) — (To) — (T1) ~ 0, we get
T, =Tp + Ty, that is, (a:b:0)+ (1:0:0) = (0:1:0). Since Ty is of order 2,
we also get Th = T —Tp = T + T, that is, (¢ :0:0)+(0:1:0)=(1:0:0).
Letting ¢, o the tangent line at o, since A = o * 0, we have div({, ) = 2(0) +
(A) — (T()) — (T]_) — (T2) ~ 07 which ylelds T1 + T2 =A-— TO =A + T(), that
is,(1:0:0)+(0:1:0) = (QL_H),#_Z))—&—(CL :b:0) = (%2, <), The last
equality holds because for a finite point (x1,¥y1) # o, we have (z1 :y1 : 1) + (a:
b:0) = (y1: x1: x1y1), that is, (z1,11) +(a:b:0) = (i, i) Furthermore,

for a finite point (x1,y1) # o, (‘IT“’, aiﬂ)), the dedicated addition formula yields

a+bxriys z1(at+bziy1)) n. _ a+bxriyr z1(a+bz1y1) atb _a \ _
(yl(bJramlyl)’ bt+aziy1 ) (1 0 0) - (yl(b+azly1)’ b+aziyr )+( ) -

b ’atb

. b +b .
(z1,91), that is, (x1,91) + (1 :0:0) = (yl?:"t‘gi’f;l)’ Zléiawf;fl)). The relation

(x1,y1) + (0 :1:0), for a finite point (z1,y1) # o, (ai—i-b’ “;rb), is obtained from

(@1,91)+(a:b:0)+(1:0:0) = (L, L)+(1:0:0) = (lterm), s
If (x1,91) = (“T“’,GLH)) then (z1,91) +(1:0:0) = (a:b:0) since (z1,y1) =
Ty =T —Th. If (z1,y1) = (af_b, “TH’) then (z1,51)+ (0:1:0)=(a:b:0)
since (z1,y1) = —T1 = Tp — To.

The next cases consider finite points. Suppose that z; = xo, that is, P =
(z1,91) and Q = (w1, y2). We can write div((z—x1)/x) = (P)+(Q)+(T2)—(0)—
2(T) = (P) + (Q) — (T2) — (0) ~ 0. Therefore, we get (z1,y1) + (z1,y2) = (0 :
1:0). The case y; = yo is similar by considering div((y —y1)/y). Lastly, suppose
that P = (x1,91) and Q = (22,y2) with x1 # z2 and y1 # y2. If z1201192 = 1
and z122 = 1 then y1y2 = 1; we thus have P = (21,y;) and Q = ( L i). (Note

ETRET
that x1ze = 1 implies P # 0.) As already shown, we then have Q = (q«lT’ 3711) =
(x1,y1)+(a : b:0). We so obtain P+Q = (xl,yl)—&—(i, 1711) =[2]P+(a:b:0).If

2122Yy1y2 = 1 and 1o # 1 then y1yo # 1 and also x1y; # x2ys. Indeed, x1y1 =
Toys and x1x2y1y2 = 1 would imply x1y1 = z2ys = 1, that is, P = (xl, i) and
Q= (xg, 712) This in turn would imply 2; = ¢ and 22 = ¢! (since P # Q) and
so x1x2 = 1, a contradiction. Consequently, if zizoy1y2 = 1 and xy22 # 1, the
result follows since then (z1,y1) + (22,y2) = ((xlyl + 2oy2) (1 +y1y2) (21 + x2) :
(191 + 22y2) (1 4+ z122) (Y1 + y2) : 0) = (a : b :0), provided that x; # x5 and
Y1 7# Ya-



Projective formulae We now present the projective version of the addition
formulee. It is useful to introduce some notation. When analyzing the perfor-
mance, we will let M and D respectively denote the cost of a multiplication and
of a multiplication by a constant, in Fom. The cost of additions and squarings
in Fom will be neglected.

For the point doubling (Eq. (4)) of P = (X1 : Y1 : Z1), we get

X3 =a X1°Z2(Y1 + Z,)*
Ys = 6-Y1?°Z.2( X1 + Z,)* ,
Zs = (X1Y1 + Z,°)2(X1 + Z1)2(Y1 + Z1)?

where a = “T'H’ and 8 = “TH’ In more detail, this can be evaluated as

mi=X\Y1+ 2% mp=X1Z1, ms=Y1Zi,
Xs=a-[ma(Y1+ Z1)?, Ys=8[ms(X1+ Z1)*,
3 = [ml(ml + mo + mg)]27
that is, with 6M + 2D (here 2D represents the cost of the two multiplications by
constants a and f3).

For the dedicated point addition (Eq. (5)) of P = (X; : Y7 : Z;) and Q =
(X2 :Ya: Zs), we get

X3 = (Xa\N125° + XoYaZ1*) (Y1 Yo + Z122) (X1 Zs + X2 Z1)

Vs = (X1Y122% + XoYaZ,%) (X1 Xo + Z122) (Y122 + Yo Zh)
Zy = (X122 + XoZ1)(Y1Zo + Yo 21 ) (X1 X2 Y1 Ya + 712 Z57)

This can be evaluated with 15M as

my = X1Xe, me=Y1Ys, m3 =212,
my = (X1 + Z21)(Xo + Z2) + mi +m3, ms = (Y1 + Z1)(Ya + Z2) + ma + ms,
mg = my(my +ms), my=ms(mi+ms), ms=mims+ms’,
my = mg + (X1Y1 + Z1%)(XoYa + Z5%),

X3 =memg, Yz =mrmg, Z3=mamsmg .
The cost can be reduced to 14M with extended coordinates (X;,Y;, Z;, T;)
where T; = X,Y; (i =1,2,3):
my = X1Xo, mo=Y1Ys, m3g= 212>,
my = (X1 + Z1)(X2 + Z2) +ma +m3, ms = (Y1 + Z1)(Ya + Z2) + ma + ma,
me = ma(ma +m3), my=ms(mi +m3), ms=mims+ms>,

mg = mg + (T1 + Z1°) (T + Z2°),

X3 =megmg, Yz=mymg, Z3=mgmsmg, T3=X3Y3 .



3 Unified Point Addition

The formulz presented in the previous section for evaluating P + @ distinguish
two cases: P = @ (doubling) and P # @ (dedicated addition). In this section,
we develop addition formulae that can be used in both cases. The corresponding
operation is referred to as unified point addition.

The starting point is our formula for the dedicated point addition. Let P =
(21,91) and Q = (z2,y2) € E be two finite points, with P # Q. Equation (5)
says that, whenever defined, P 4+ Q = (x3,y3) where
(z1y1 + 22y2) (1 + 2122)

(x1 + 22)(1 + z122y1Y2)

(@ + w2ye) (14 y1y2) B
Ty = and y3 =
(y1 + y2) (1 + z1229192)
The point addition is defined up to the curve equation. Using the additional
relations ax;(y;2 +y; + 1) = by (22 + x5 + 1), i € {1,2}, we get after a lengthy
and tedious calculation:
b(z1 + 22) (1 + 21229192) + (@ + b)21z2(1 + y1y2)
b(l+$15€2)(1 —I—.Ill‘gylyg) (6)
vy = a(yr +y2)(1 + z12291y2) + (@ + b)y1y2(1 + z122) '
a(l +y1y2)(1 + z1229192)

xr3 =

The following Sage script [21] verifies that the two formulations for z3 are equiv-
alent. The equivalence for ys follows by symmetry.

R.<a,b,x1,y1,x2,y2>=GF(2) []
S=R.quotient ([

a*x1*(y172+y1+1) +b*xylx (x1"2+x1+1),

axx2x (y272+y2+1) +b*xy2* (x272+x2+1)
D
verif = bx(x1*yl+x2*y2)* (1+x1%x2)* (1+yl*xy2)+

(y1+y2) * ((a+b) *x1*x2* (1+y1*xy2) +b* (x1+x2) * (1+x1*x2*y1*y2))

0 == S(verif)

Remarkably, this new expression works for doubling a point P = (z1,y1).
Indeed, if we replace (z3,y2) with (z1,y1) in Eq. (6), we obtain

(a+b)z:*(1+91°) (a+b)y*(1+21%)
b(1 +z12)(1 + 21%y12) a(l+y12)(1+212y2)
namely, our previous doubling formula (Eq. (4)).

The unified addition law given by Eq. (6) is defined when the denomina-
tors b(1 + x122)(1 + x122y1y2) and a(l + y1y2)(1 + x122y1y2) are non-zero. If
T1Tay1y2 = 1, x1290 # 1 and y1y2 # 1 then P+ Q = (a : b: 0). If 129 = 1 or
t%}11y2 =1 fnamely, P = (1’173/1) (7& O) and Q € {(%ﬂyl)a (1’17?11)7 (%7%)})

en

T3 = and y3 =

(1:0:0) if 2129 =1 and y1 = y2

P+Q=<(0:1:0) if yyyo =1 and z1 = x5
(b(1+w12)(1+x12y12) a(14y12)(1+z1%y12)
@ )n 21 F51%) (@t8)y:2(1+a17)

) otherwise



Proof. Observe that since @ = (x2,y2) belongs to the curve so do (i,yg),
(22, y%), and (i, y%) Suppose first that z129 = 1 <= x4 = i Now using
the fact that (z1,y1) and (%,yg) are on the curve implies that (y1 + y2)(y1 +
yo+1) = (y1 + yg)(yl +1+ y%) = (y1 + yg)(y—l1 + y2) = 0. This means that
(w2,2) € {(z%ayl), (ﬁa 3711)}

Analogously, it can be shown that y;yo = 1 implies (z1 + z2) (ﬁ + xg) =0,

that is, (z2,y2) € {(xl, y%)’ (%7 i)} O

The cases where the points P and/or @ are at infinity are detailed in the
previous section.

To sum up, noting that the case P = (z1,41) and Q € {(i,yl), (wl, y—ll),
(z%v y%)} corresponds to P+Q =(1:0:0), P+Q=(0:1:0)or Q=P+ (a:
b : 0), we see that the exceptional cases always involve the points at infinity.
This leads to the following result.

Proposition 1. Let E be a binary Huff curve over Fom and let G C E(Fam)
be a subgroup such that (a : b:0),(1:0:0),(0:1:0) ¢ G. Then the unified
addition formula given by Eq. (6) is complete. O

In particular, the addition formula is complete in a subgroup of odd order,
provided that (1:0:0) and (0:1:0) are both of even order.

Projective version Here we give the projective version of Eq. (6). For P =
(X1:Y1:Z1)and Q = (X2 : Yy : Z3), we get P+ Q = (X3 : Y3 : Z3) with

X3 = (2122 + 1Ya) (X120 + X221) (212 25 + X1 X2Y1Ya) +
aX1X271Z2(Z1 22 + Y1Y2))

Vs = (2125 + X1 X2) (Y122 + Y221 )(Z1% 2% + X1 Xo Y1 Yo) + (7)
BY1YoZ1 Zo( 21 Z2 + X1X2))

Zs = (2125 + X1X2)(Z1Z2 + Y1Y2)(Z1° 2% + X1 XoV1Y5)

where a = “TH’ and 8 = “T*b This can be evaluated as

my = X1Xo, mao=Y1Ys, mg= 212,
my = (X1 + 21)(Xo + Z2) +my +m3, ms = Y1+ 2Z1)(Yo+ Z3) + ma+m3
mg =mims, M7 =moms, msg=mimy+ms>,
my = me(ma +ms)®,  mig =mz(mi + ms)?,
myy = mg(ma +mgz), miz = mg(mi +ms),

X3 =mama1 +a-mg, Y3 =mgmiz+ - mio, Z3 = mi1(mq + ms),

that is, with 15M 4 2D (again 2D represents the cost of the two multiplications
by constants o and ().



More formulse There are other unified addition formulee similar to Eq. (6).
For instance, whenever defined, we also have
(1+ y1y2)(5($1 +x2) + x122(a + b+ ay; + ayg))

b(l + ﬂ?1$2)(1 + xla:gylyg)
(1 + z122) (alyr + y2) + y1y2(a + b+ bay + bas))
(

a(l+ y1y2)(1 + z122y1Y2)

Yz =

Alternate unified formulae can be obtained by selecting another neutral ele-
ment. This results in translating the group law. For instance, defining o’ = (a :
b : 0) as the neutral element yields, whenever defined, the following unified point
addition formula:

b1 + z122)(1 + z122Y1Y2)
b(z1 + 22)(1 + 2122912) + (g +b)z122(1 + Yy192)
b(1 + 122)*(1 + T122Y1Y2)Y1Y2
[b(z1 4+ 22) (1 + z1220192) + (a + b)z122(1 + y192)] (1 4 Z132) Y192
a(l +y1y2)(1 + z1229192)
Y1+ y2) (1 + z122y192) + (2a +b)y1y2(1 + r122)
_ a(l+y1y2)*(1 4+ z122y1y2) 2172
[b(z1 4+ 22) (1 + z1229192) + (a4 b)122(1 + y192)] (1 + 122) Y192

Tr3 =

y3=a(

Advantageously, the corresponding projective version can be evaluated with
13M + 2D as

my = X1Xo, mo=Y1Ye, m3=212Z5, m4=mima,
ms = maomg, me = (X1+ Z1)(Xo+ Z2) +m1 +mg3
X3 = (m1 +m3)(ma +ms)(ms® +ma), Ys=pmi(ms+ms)*(ms® +ma),
Z3 = (my +ms) [(aml(m32 + ms) + meg(my + mgz)],

_ atb —a
where a = %32 and p = ¢.

4 Differential Point Addition

The so-called Montgomery representation was developed in [16] in order to speed
up the implementation of the elliptic curve factoring method (ECM) [12]. It
was subsequently adapted to (ordinary) Weierstrafl elliptic curves over binary
fields in [13,20] (see also [6]). The idea stems from the observation that the
z-coordinate of the sum of two points can be evaluated from two z-coordinates
of the input points and the x-coordinate of their difference. More generally, a
differential point addition consists in calculating w(P + Q) from w(P), w(Q)
and w(Q — P), for a certain coordinate function w. When such an operation
is available, the value of w([k]P) can be efficiently computed from the binary
expansion of scalar k, k = Zf:é k; 2% with k; € {0,1} and k;,_; = 1. Defining
Kj = Zf;; ki 2", P; = [r;]P, and Q; = P; + P, we have

(w(Pe—1), w(Qe—1)) = (w(P),w(P + P))



and

w(Pjp1+ Pijp1), w(Pj11 4+ Qj41)) ifk;j=0

(B, w(@y) = { s Fra) et Q) ik =0
(w(Pjr1 + Qj41), w(Qj41 + Qjt1)) ifkj =1

for j =¢—2,...,0. Remarking that ko = k, the value of w([k]P) is obtained at

the end of the recursion as w(Pp).

As shown in Section 2, the inverse of a point P = (z1,y;) on a binary Huff
curve is given by —P = (i7,91) with 77 = %‘m and 1 = Q“b(izim
natural choice for coordinate function w : P +— w(P) is therefore to define it as
the product of the z- and y-coordinates, or as a function thereof. Doing so, we
see that w(P) = w(—P).

Specifically, for a finite point P = (z1,y1), we define w(P) = x1y;. For
the points at infinity, we define w(1 : 0 : 0) = ¢, w(0 : 1 : 0) = g, and
w(a:b:0)=“x” = (1:0). Hence, for the differential doubling, we immediately
obtain from Eq. (4),

v - w?

: _ (atb)?
m with Y=, (8)

w([2]P) = ab

and where wy = w(P), provided that wy # 1. If wy = 1 then w([2]P) = (1:0).

Let Q be a second point, different from P. We let wy, wo, and w denote the
w-coordinate of P, Q, and Q — P, respectively. In principle, it could be possible
to derive the formula for the differential addition from Eq. (5). A much simpler
way is to rely on the connection between our choice of the w-coordinate and the
birational map with the Weierstrafl equation; cf. Eq. (2).

Montgomery representation comes in two flavors: additive method and mul-
tiplicative method. From the additive formula in [13, Lemma 1] (slightly gener-
alized), whenever defined, we get
w - (w1 + w2)2

(a+b)*
(w1 + w2)2 + (yw) - wrws :

w(P+ Q)= with v = =

An application of the multiplicative formula in [20, § 3.2] yields after simplifica-
tion
(w1 +w2)®

W(P+Q) = D - (1 +w1w2)2 )

)

provided that wjws # 1. (Note that @w # 0 since P # Q.) The case wiws = 1
corresponds to the case x1z2y1y2 = 1; see Section 2. If wywy = 1 then w(P +

Q)= (1:0).

Projective version To have projective formulee, we represent the w-coordinate
of a point P by the pair (W : Z) = (Qw(P) : ) if P # (a : b : 0), and



(W :2Z)=(0:0)if P = (a:b:0), for some non-zero § € Fym. Letting
w; = (W; : Z;) for i = 1,2, and w = (W : Z), we obtain from Egs (8) and (9)

W([2]P) =~ - (W12:)?
Z([2]P) = (Wy + Z1)*

and

W(P+Q) = Z(W1Zy + WaZ1)?
Z(P —|— Q) - W(W1W2 + 2122)2

The differential point doubling requires 1M + 1D (where D is the cost of a
multiplication by +) and, by computing W1 Zs + WaZy as (Wy + Z1)(Wa + Z3) +
(W1 Wy + Z1Z5), the differential point addition requires 5M. The cost of the
differential point addition reduces to 4M when Z = 1. Using the above scalar
multiplication algorithm, the computation of w([k]P) can therefore be evaluated
with 5M + 1D per bit of scalar k. Furthermore, we note that over a binary field
of even extension (i.e., over Fom with m even), selecting the ratio a/b = ¢ (with
2+ (¢ +1=0) leads to v = 1 and so reduces the cost of the differential point
doubling to 1M.

5 Generalized Binary Huff Curves

The transformations given by Eq. (2) show how to express any binary Huff curve
as a Weierstrafl curve. The reverse direction is however not always possible. Not
all ordinary elliptic curves over Fom can be expressed in the Huff form as defined
by Eq. (1). Worse, none of the NIST-recommended curves [17] can be written in
this model. In this section, we generalize the definition of binary Huff curves to
cover all isomorphism classes of ordinary curves over Fom, for m > 4.

In [9, Section 3|, Huff’s model is generalized to axP(y) = byP(x) for some
monic polynomial P € Fom[t], of degree 2, with non-zero discriminant, and such
that P(0) # 0. Binary Huff curves correspond to the choice P(t) = % +t + 1.
We consider below a more general polynomial, namely, P(t) = t? + ft + 1 with

f#0.

Definition 2. A generalized binary Huff curve is the locus in P?(Fam) of the
equation
aX(Y2+ fYZ+ 2% =bY(X* + fXZ + Z?), (10)

where a,b, f € F5m and a # b.

Remark 3. There are other suitable generalizations of binary Huff curves, like
P(t) = t? +t+e with e # 0. We selected P(t) = t? + ft + 1 since the arithmetic
looked slightly simpler. Note also that polynomial P(t) = t* + ft + e (with
e, f # 0) is not more general since the change of variables (z,y) + (v/eZ,/e7)
transforms the equation ax(y?+ fy+e) = by(x?+ fr+e) into aZ(y? + f'y+1) =
by(z? + f'z + 1) where f' = f/\/e.



The affine model of Eq. (10) is az(y? + fy + 1) = by(z® + fz + 1). It is
birationally equivalent to the Weierstraf} elliptic curve

v(v+ (a +b)fu) = u(u + a®)(u + b?)
under the inverse maps

bluta®) _a(u+b?) ab ab(azy+b)
(z,y) < ( “a ’vi(Zer)fu) and (u,v) + <@7%)

The points at infinity are (¢ : b : 0), (1 : 0 : 0) and (0 : 1 : 0). Point A,
namely the point of intersection of the tangent line at o with the curve, becomes

A= (s 2h)

Before stating the universality of the generalized model, we summarize some
elementary results on binary fields that are needed to understand the proof.
We let Tr denote the trace function defined as the linear function given by Tr :
Fom — Fo,0 +— ZT;Ol 62’ . We recall that the quadratic equation z2>+Az+B = 0
with A # 0 has a solution in Fom if and only if Tr(B/A?) = 0. If z is a solution
then the other solution is 2o + A. Finally, it is easy to see that Tr(A?) = Tr(A)

for A € Fom.

Proposition 2. Letm > 4. Each ordinary elliptic curve over Fom is birationally
equivalent over Fom to a generalized binary Huff curve.

Proof. Each ordinary elliptic curve over Fom is isomorphic to vZ 4+ uv = u® +
asu® + ag for some ag,ag € Fom, ag # 0. Further, from [19, Proposition 3.1(b)
and Table 1.2], the Weierstral curves v? + uv = u® + agu? + ag and v(v +
(a + b)fu) = u(u + a?)(u + b?) are isomorphic under the admissible change of
variables (u,v) < (p?u, p*(v + su+ \/ag)) with g = (a + b) f if and only if the
curve parameters satisfy

2 +s+ay+f?=0 and (a+b)*f'Vas=a’b?

for some s. The equation s? + s + az + f~2 = 0 has a solution s € Fom if
and only if Tr(ag + f72) = 0 <= Tr(f~!) = Tr(as). Dividing the second
equation by b* and letting ¢t = ‘g—; yields 2 + f4\1/%t + 1 = 0, which has a
solution ¢ € Fom if and only if Tr(f8ag) = Tr(f ¢/ag) = 0. Consequently, given
an ordinary binary elliptic curve v? + uv = u® + asu? + ag, one can obtain an
isomorphic curve v(v + (a+b) fu) = u(u+ a?)(u + b*) — and so the birationally
equivalent generalized binary Huff curve az(y? + fy + 1) = by(a® + fa + 1),

by choosing parameter f such that Tr(f~') = Tr(as) and Tr(f ¢ag) = 0, and

parameters a and b such that %2 is a solution to t? + ]047\1/% t+1=0.
It remains to show that such an f always exists. The proof proceeds analo-
gously to the one offered in [2, Theorem 4.3]. Fix as € Fom and ag € F5... For

each 0, ¢ € Fy, define

Dse = {f € F3n : Te(f71) = 6, Tx(f as) = €} -




We have to show that the set Dry(4,),0 is non-empty.

We have #Dg o +#D1,0 = 2"~ — 1. Indeed, as f runs through F3,., so does
[¥/as. Hence, #Dg o+ # D1 o is the number of f € F3,, with Tr(f) = 0. We also
have #D1 o +#D1,1 = 2m~1 Indeed, for the same reason, #D10+#D; ;1 is the
number of f € F5,. with Tr(f) =1

We compute #Dg o + #D; 1, which is equal to the number of f € F3.
with Tr(f~! + f{/ag) = 0. For each f with Tr(f~' + f{/ag) = 0, there are
exactly two choices of © € Fom such that 22 + x + f~! + fvag = 0 <=
22?4+ f?x = [+ f3¢as, producing two points (f, fz) on the elliptic curve
v 4w = {V%u3 + u. Hasse’s theorem says that this curve has 2™ + 1 + 7
points for some integer 7 in the interval [—2y/27,21/2m]. Since all points of
this curve but (0,0) and the point at infinity appear as (f, fz), it follows that
#Doo + #D11 = 2™ 1 + (7 — 1)/2. Finally, we have 4#D19 = 2(#Doo +
#D1,0) + 2(#D1,0 + D1,1) — 2(#Do,0 + #D1,1) = 2™ — (7 + 1) and 44 Do o =
4(2m=Y — 1) —4#D1 o = 2™ + (7 — 3). Since T € [~21/2™,2+/2™], this implies
#D, > =22l ang #Dg, > Z=2Y2"=3 The result now follows by
remarking that 2 — 2y/2m — 1 > 2™ —2y/2m — 3 > 0 for m > 4. This is true
since (V2™ — 1)2 > (V2% — 1)2 > 4, which yields 2 — 2V/2m + 1 > 4
2m —2y/2m — 3> 0. O

The arithmetic on generalized binary Huff curves is easily derived from the
formulae given in Section 2. Let E' be a generalized binary Huff curve as per
Eq. (10). Let also P = (x1,y1) and Q = (22,92) € ET be two finite points.
The formula given by Eq. (3) remains valid for computing the inverse of P. An
alternate expression for —P = (&1, 9;) is, whenever defined,

yi(ax + 1) z1(By1 +1)

T =>———> and y3 = —-—= . 11
' By +1 . azy +1 D

where & = “b—";f’ and 3 = ‘%’;f’. The exceptional points of Eq. (11) are P =

(“b—?l’, (f—fb), P = (GLL)’ %)7 P = (ab—fb, ‘%}f’), and P = (ab—“]‘f’, ‘2—4}[’)7 the inverses

- —(1:0- _ ( bflatbtaf)? _af(atbtbf)? — (-
of which are —-P=(1:0:0), —P = ((aer)(aerer)f)Q7 (a+b()(a+b+af)2), —P=(0:

1:0), and —P = ((ab??ig(::f:;)@?’ (a;c%fbﬁ:fa)é)z), respectively.

The doubling formula (Eq. (4)) becomes [2]P = (x3,y3) with
fla+b)zi*(1+y1)* fla+b)yi*(1 +21)?
b(1 4 21)*(1 + z11)? a(l+y1)*(1 + z11)?
The exceptional cases are handled in the same way as in Section 2. We note that
the condition z1y; = 1 is only possible when Tr(f~!) = 0.

The formula for dedicated point addition (Eq. (5)) is unchanged. For the
unified point addition, we get, whenever defined, P + Q = (z3,ys3) with

_b(wy 4 22) (1 + 2iz2v1y2) + fla+ b)xize(1l + y1yo)

= b(1 + z129) (1 + z120y1Y2) (13)
a(yr +y2) (1 + z1z2y1y2) + fla+ b)yiy2(1 + z122) .

a(l+y1y2)(1 + z1229192)

and y3 =

T3 = (12)




The exceptional cases are the same as for the (regular) binary Huff curves. In
particular, Proposition 1 remains valid for generalized binary Huff curves: unified
addition is complete in any subgroup that does not contain the points at infinity.

Furthermore, the performance is unchanged. This is easily seen by comparing
the generalized formulese of this section with the previous ones (i.e., for f =
1). The cost of a point doubling, dedicated point addition, and unified point
addition is of 6M + 2D, 15M (or 14M with extended coordinates), and 15M + 2D,
respectively. This is better than with binary Edwards curves [5] but, contrary
to Edwards’ form, unified addition is guaranteed to be complete only in certain
proper subgroups.

To sum up, the generalized model presented in this section can be used to
represent any ordinary elliptic curve over a finite field of characteristic two; this
includes all NIST-recommended curves. It offers a competitive arithmetic leading
to efficient implementations. Further, they can be made secure against certain
side-channel attacks [11] for cryptographic applications. When the operations
of point addition and point doubling make use of different formulee, they may
produce different power traces revealing the secret value of scalar k in the com-
putation of @ = [k]P. There are basically three known approaches to circumvent
the leakage: (i) unifying the addition formulee, (i) inserting dummy operations,
and (%ii) using regular scalar multiplication algorithms [3, Chapter V]. We note
that with the second approach the resulting implementations become vulnerable
to safe-error attacks [22]. The so-called Montgomery ladder [16] is an example of
a regular scalar multiplication algorithm (third approach). It can be used with
the differential point addition formule given in Section 4. Given their connection
with those of the Weierstrafl model, the so-obtained, Huff-based, implementa-
tions are equally efficient as the fastest implementations of the Montgomery
ladder. But the main advantage of (generalized) Huff curves is that they are
equipped with unified point addition formulee: the same formulse can be used
for doubling or adding points, as required by the first approach against side-
channel leakage. The formule are even complete —in a subgroup that does not
contain the points at infinity. Very few models are known to feature a com-
plete addition law. The Edwards model, as introduced by Bernstein et al. in [2],
has a such addition law and without any restriction. But this comes at a price:
18M+ 7D (or 21M 4 4D) are needed for the complete addition of two points on a
binary Edwards curve. Therefore, whenever applicable, the (generalized) binary
Huff model should be preferred since it offers faster complete addition formulee.
Other cryptographic applications of complete addition law include protection
against exceptional procedure attacks [8] and batch computing [1].

6 Conclusion

This paper studied in detail the addition law for a new model for elliptic curves.
While much attention has been paid to elliptic curves over fields of large charac-
teristic, fewer models are known for elliptic curves over binary fields. Our results
add the Huff model to the cryptographer’s toolbox for the implementation of



elliptic curve cryptography in characteristic two. Its distinct arithmetic features
may offer an interesting alternative in a number of applications.

Acknowledgments

We are very grateful to the anonymous referees for their useful comments and
suggestions.

References

1.

o

10.

11.

12.

13.

14.

15.

Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) Advances in Cryptology
— CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 317-336.
Springer (2009)

. Bernstein, D.J., Lange, T., Farashahi, R.R.: Binary Edwards curves. In: Oswald, E.,

Rohatgi, P. (eds.) Cryptographic Hardware and Embedded Systems — CHES 2008.
Lecture Notes in Computer Science, vol. 5154, pp. 244-265. Springer (2008)
Blake, LF., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryp-
tography, London Mathematical Society Lecture Note Series, vol. 317. Cambridge
University Press (2005)

Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7(4), 385—434 (1986)

Explicit-formulas database (EFD). http://www.hyperelliptic.org/EFD/
Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines. Finite Fields and Applications 15, 246-260 (2009)

Huff, G.B.: Diophantine problems in geometry and elliptic ternary forms. Duke
Math. J. 15, 443-453 (1948)

Izu, T., Takagi, T.: Exceptional procedure attack on elliptic curve cryptosystems.
In: Desmedt, Y. (ed.) Public Key Cryptography — PKC 2003. Lecture Notes in
Computer Science, vol. 2567, pp. 224-239. Springer (2003)

Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In: Hanrot,
G., Morain, F., Thomé, E. (eds.) Algorithmic Number Theory (ANTS-IX). Lecture
Notes in Computer Science, vol. 6197, pp. 234-250. Springer (2010)

Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203—
209 (1987)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
Advances in Cryptology — CRYPTO ’99. Lecture Notes in Computer Science, vol.
1666, pp. 388—-397. Springer-Verlag (1999)

Lenstra, Jr., H-W.: Factoring integers with elliptic curves. Annals of Mathematics
126(2), 649-673 (1987)

Lépez, J., Dahab, R.: Fast multiplication on elliptic curves over GF'(2™) without
precomputation. In: Kog, C., Paar, C. (eds.) Cryptographic Hardware and Em-
bedded Systems — CHES’99. Lecture Notes in Computer Science, vol. 1717, pp.
316-327. Springer (1999)

Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve discrete logaritms
to a finite field. IEEE Transactions on Information Theory 39(5), 1639-1646 (1993)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) Ad-
vances in Cryptology — CRYPTO ’85. Lecture Notes in Computer Science, vol.
218, pp. 417-426. Springer (1986)



16.

17.

18.

19.

20.

21.

22.

Montgomery, P.L.: Speeding up the Pollard and elliptic curve methods of factor-
ization. Mathematics of Computation 48(177), 243-264 (1987)

National Institute of Standards and Technology: Recommended elliptic curves
for federal government use. http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/
NISTReCur.pdf (July 1999)

Peeples, Jr., W.D.: Elliptic curves and rational distance sets. Proc. Am. Math. Soc.
5, 29-33 (1954)

Silverman, J.H.: The Arithmetic of Elliptic Curves, Graduate Texts in Mathemat-
ics, vol. 106, chap. III. Springer-Verlag (1986)

Stam, M.: On Montgomery-like representations for elliptic curves over GF(2%).
In: Desmedt, Y. (ed.) Public Key Cryptography — PKC 2003. Lecture Notes in
Computer Science, vol. 2567, pp. 240-253. Springer (2003)

Stein, W.A., et al.: Sage Mathematics Software (Version 4.5.1). The Sage Devel-
opment Team (2010), http://www.sagemath.org

Yen, S.M., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Transactions on Computers 49(9), 967-970 (2000)



