
Anonymous Credentials from (Indexed) Aggregate
Signatures

Sébastien Canard
Orange Labs, Caen, France

Applied Crypto Group
sebastien.canard@orange-ftgroup.com

Roch Lescuyer
Orange Labs, Caen, France

Applied Crypto Group
roch.lescuyer@orange-ftgroup.com

ABSTRACT
Anonymous credential systems allow users to obtain certi-
fied credentials (a driving license, a student card, etc.) from
organizations and then later to prove the possession of one
(or more) credential(s) to another party, while minimizing
the information given to the latter. While current construc-
tions use zero-knowledge proofs of knowledge of a signature
or blinding mechanisms, we keep in this paper a new ap-
proach, based on aggregate signature schemes.

In particular, we use the notion of indexed aggregate sig-
nature by which we aggregate several signatures into a single
one, but only if they are initially related to the same index.
The resulting anonymous credential system is the first one
which efficiently enables a user to prove the possession, in
an untraceable way, of several credentials issued by possibly
several organizations.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Cryptosystems; K.4.1
[Computers and Society]: Public Policy Issues—Privacy ;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

General Terms
Algorithms, Design, Performance, Security

Keywords
Cryptographic protocols, Anonymous credentials, Privacy-
enhancing systems, Aggregate signatures

1. INTRODUCTION
Privacy is today one of the most interesting problem our

modern society needs to face to. Among privacy principles,
the minimization of users’ data when they are interacting
with service providers is of great importance. For example,
suppose that a service provider wants to offer some privileges

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIM’11, October 21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1006-2/11/10 ...$10.00.

to its customers when they are e.g. students and/or under
25. This service provider does not necessarily need to obtain
all the information about the customer, such as her name,
exact address, exact age, etc. However, it needs to be sure
that these informations, called attributes, are certified by
an authorized entity (in our example, the university or the
country’s authority). This use case is typically addressed
by the concept of anonymous credential, which has been
introduced by Chaum in [13].

Related work. Several anonymous credential systems have
been proposed, using semi-trusted third parties [14], or not.
Among the previously proposed systems, some of them are
theoretical only [18, 25] while the others are practical, such
as those proposed by Camenisch and Lysyanskaya [10, 11]
or by Brands [7]. More recent papers also address variants
of anonymous credentials, such as the delegation of creden-
tials [2, 21], or the problem of the revocation [9].

The Camenisch-Lysyanskaya framework [10, 11], proposed
in [3] in the standard model and implemented by IBM as the
Idemix system [23], is related to the use of group signature
schemes. The Brands’s view [7], based on the use of blind
signatures and implemented in the Microsoft U-Prove tech-
nology [26], is much more efficient but induces some kind
of traceability of the (still anonymous) user. This drawback
can be avoided by asking for several certifications of the
same credentials to the same organization, at the cost of a
less efficient and easy-to-use solution.

Multi-organizations. In our above practical example, if
the user has to prove that she is both student and under
25, she may need to use both her student card (delivered by
the university) and her identity card (delivered by the coun-
try’s authority). Since this case can occur in real life ap-
plications of anonymous credentials, cryptographic schemes
should take into account the case where a user manipulates
at the same time several credentials certified by possibly
different organizations. However, none of existing schemes
directly considers this case. The sole exception is the Ver-
heul proposal [29] but the construction is not proven secure.
Other constructions, based on group or blind signatures, for-
mally consider multi-organizations (see e.g. [11]) but not the
above case where a user has to prove the possession of several
credentials not issued by the same organization.

Regarding constructions in [10, 11] based on group signa-
tures, each credential is represented by the belonging to a
group managed by the related organization. When one user
has to prove the possession of several credentials, she has to
prove that she belongs to two different groups, which neces-
sitates a (time and space) complexity which depends on the

number of manipulated credentials. This is similar for blind
signature based solutions [7] since each organization is the
signer of the used blind signature scheme. In this paper, we
consequently enrich the current model and next propose a
practical scheme with this additional feature.

Aggregate Signatures. For this purpose, we adopt a new
approach for anonymous credential systems, which is based
on the use of aggregate signatures [6, 24]. Such signature
schemes permit to aggregate several signatures into a sin-
gle one, while initial signatures have been produced under
potentially different messages and public keys. As the aggre-
gation should not be done to create false relations by using
certified credentials given to different users, we need to in-
troduce a new variant (in the flavour of the synchronized
aggregate signatures [22, 1]) we call indexed aggregate sig-
nature scheme. In our case, aggregation is only possible if
signatures have been produced using the same initial index.
This type of signature scheme is not necessarily related to
anonymous credentials and may be of independent interest.

Our contribution. As a conclusion, our contribution is
threefold. First, we propose a model for anonymous cre-
dentials where the multi-organizations case is made explicit.
Secondly, we propose to achieve this with the help of indexed
aggregate signatures. Finally we propose a concrete scheme.

Organization of the paper. The paper is organized as fol-
lows. In Section 2, we formally describe our new model.
Section 3 introduces the new notion of indexed aggregate
signature scheme, with the formal model and a concrete
scheme. In Section 4, we give some additional cryptographic
building blocks we need and our new anonymous credential
system built upon indexed aggregate signatures. We finally
conclude and discuss open problems in Section 5.

2. MODEL FOR ANONYMOUS CREDEN-
TIAL SYSTEMS

In this section, we introduce a model for anonymous cre-
dentials, based on the work on [10, 29] and making some
modifications that are, from our point of view, more rele-
vant to real-life needs. In particular, we add the possibility
for a user to prove the possession of several certified creden-
tials coming from potentially different organizations.

2.1 Procedures
An anonymous credential system is given by the following

algorithms, involving organizations, users and verifiers.

Setup. This algorithm takes as input a security parameter
λ and outputs the scheme parameters param, which
are given to all algorithms as auxiliary input.

UserKG, OrgKG. These algorithms produce keys pairs
(pkU , skU) for users and (pkO, skO) for organizations
respectively.

Obtain ↔ Issue. The Obtain algorithm takes a user se-
cret key skU and an organization public key pkO. The
Issue algorithm takes an organization secret key skO,
a user public key pkU and a list of attributes {mi}li=1.
At the end of the protocol, user U has obtained a cre-
dential C on {mi}li=1, or an error message ⊥.

Show ↔ Verify. The Show algorithm takes a user se-
cret key skU , a list of organization public keys to-

gether with a list of attributes1 {(pkOn ,mn)}Nn=1 and

a list of credentials {Cj}Jj=1. The Verify algorithm
takes the same list of public keys and messages {(pkOn ,

mn)}Nn=1. At the end of the protocol, the Verify al-
gorithm outputs a bit b ∈ {0, 1}.

First of all we require a system to be correct : any associ-
ation of correctly generated credentials has to be accepted
by a verifier if protocols are carried out honestly. More for-
mally, we require that for all keys of a user (pkU , skU), and of
some organizations {(pkOj , skOj)}Jj=1, and for the creden-

tials {Cj}Jj=1 on attributes {{mj,i}
lj
i=1}

J
j=1 output by the

Obtain/Issue protocol with this user and the different or-
ganizations, the output of the verification protocol is 1 with
Show(skU , {(pkOn ,mn)}Nn=1, {Cj}Jj=1) and Verify({(pkOn ,

mn)}Nn=1), for each combination where, for all n, there exists
j, i s.t. mn = mj,i and pkn = pkOj .

Then, as usual for anonymous credential systems, we re-
quire that a system satisfies the unforgeability and the ano-
nymity properties. Before stating these properties formally
as experiments, we introduce some oracles and variables.

2.2 Oracles and Variables
During the below experiments, the adversary may inter-

act with some oracles and manipulate some global variables
(all initialized with empty). The set of honest users (resp.
organizations) is denoted HU (resp. HO), while the set of
corrupted users (resp. organizations) is denoted CU (resp.
CO). The table upk (resp. opk) contains the users’ (resp
organizations’) public keys, while usk (resp. osk) contains
the related users’ (resp organizations’) secret keys. Finally,
the set cred records the credentials obtained by all the users.
For example, the entry cred[i][j] contains the set of all the
credentials belonging to user i and issued by organization j.
Similarly, the entry att[i][j] contains the attributes of user
i that are certified by the organization j. The oracles are
next given in Figure 1.

We are now ready to define the unforgeability and anony-
mity properties. We denote by O the set of oracles that are
available to an adversary.

2.3 Unforgeability
Regarding the unforgeability, the aim of the adversary is

to prove that it is in possession of some credentials delivered
by some honest organizations while this is not the case. In
particular, the adversary can (i) interact with organizations
in order to obtain credentials (using the SndToI oracle),
and (ii) ask honest users to obtain credentials (using the
GetCred oracle). The adversary is accepted if it outputs
an attribute which has never been certified or if it is able to
combine several honestly obtained credentials while this is
not allowed. More precisely, the unforgeability experiment is
defined below. Informally speaking, the condition (5b) says
that no user (honest or not) has received all the claimed cre-
dentials. We say that an anonymous credential system AC
is unforgeable if for any adversary (A1,A2), the probability
that the UnforgeabilityACA outputs 1 is negligible (as a
function of λ).

1Using this notation, we remark that an organization can
be given several times. As a consequence, N can be greater
than the number of existing organizations.

AddU(i). If it does not already exists, it adds i to the set HU of honest users, executes UserKG and updates accordingly the i-th
entry of upk and usk. It finally returns upk[i].

AddO(j). It works similarly to the AddU oracle, but for organizations, using OrgKG, updating opk and osk and outputting opk[j].

USK(i) (resp. OSK(j)). The oracle simply returns (usk[i], cred[i]) (resp. osk[j]) (participants are not corrupted, but keys leak).

CrptU(i, pkU) (resp. CrptO(j, pkO)). It adds i (resp. j) to the set CU (resp. CO) of corrupted users (resp. organizations), sets
upk[i]← pkU (resp. opk[j]← pkO) and outputs 1 if no error occurs.

GetCred(i, j, (m1, . . . ,ml)). This oracle permits the honest user i to obtain certified credentials on the attributes (m1, . . . ,ml) from
the honest organization j. For this purpose, the oracle plays the role of both the user and the organization, using the appropriate
keys. The attributes (and credentials) are next added to att[i][j] and cred[i][j] and the external communications are outputted.

SndToU(i, j,m) (resp. SndToI(i, j,m)). This oracle plays the role of the user i (resp. organization j) which receives the message m
from the corrupted organization j (resp. user i). This may modify the entries att[i][j] and cred[i][j].

Ch(b, i0, i1, {(n,mn)}Nn=1). This oracle is related to the anonymity experiment and depends on the bit b set by this experiment. It

takes as input a pair i0 and i1 of honest users and a set {(n,mn)}Nn=1 of N attributes (chosen by the adversary) certified by

different (corrupted) organizations to both i0 and i1. It plays the role of the user ib with the set of credentials {(n, mn)}Nn=1 with
the adversary, playing the role of the verifier, during a verification protocol. It outputs the external view of the whole protocol.

Figure 1: Oracles

UnforgeabilityACA (λ)

1. param← Setup(1λ);

2. O ← {AddU(·), AddO(·), USK(·), OSK(·), CrptU(·),
CrptO(·), GetCred(·, ·, ·)}, SndToI(·, ·, ·);

3. (N, {(n,mn)}Nn=1, st)← A1
O(param);

4. A Show/Verify protocol is executed between the adver-
sary A2, taking on input st and playing the role of the
user, and the challenger, playing the role of the verifier
and taking on input {(pkOn ,mn)}Nn=1;

5. Return 1 if

(a) the Verify procedure outputs 1 and

(b) for all i∗ ∈ CU ∪HU , there exists n∗ ∈ [1, N]∩HO
such that mn∗ 6∈ att[i∗][n∗].

2.4 Anonymity
Regarding the anonymity, the aim of the adversary is to

distinguish between two chosen honest users which one is
showing her credentials. For this purpose, the adversary
has access to the Ch oracle given in Figure 1. Moreover it
can interact with honest users to issue them some credentials
with the help of the SndToU oracle. The formal experiment
and the definition are as follows.

AnonymityACA (λ)

1. param← Setup(1λ); b
$← {0, 1};

2. O ← {AddU(·), AddO(·), USK(·), OSK(·), CrptU(·),
CrptO(·), SndToU(·, ·), Ch(b, ·, ·, ·)};

3. b′ ← AO(param);

4. Return 1 if b = b′.

We say that an anonymous credential system AC is anony-
mous if for any adversary A, the probability that the exper-
iment AnonymityACA outputs 1 is negligibly close to 1/2 (as
a function of λ).

3. INDEXED AGGREGATE SIGNATURES
An aggregate signature scheme [6, 24] is a classical sig-

nature scheme augmented with a specific algorithm which
allows anyone to aggregate, into a single signature, a list
of signatures valid under possibly different public keys and

messages. In this section, we introduce the notion of indexed
aggregate signatures, which will be useful in our anonymous
credential system and which may be of independent interest.

3.1 Traditional Aggregate Signatures and In-
troduction of the Index

We first recall the traditional notion of aggregate signature
scheme such as described in e.g. [6, 24]. In a nutshell, such a
scheme consists in five procedures: Setup, KeyGen, Sign,
Aggregate and Verify.

The Setup and KeyGen procedures permit to gener-
ate the different parameters and keys for the signer, while
the Sign algorithm corresponds to the signature procedure
which on input a message and a secret key, output a signa-
ture on the message.

Next, on input a set of N triplets of the form (pkSn , mn,
σn), the Aggregate algorithm outputs a signature σ on
the list of messages (m1, · · · ,mN), under the public keys
(pkS1

, · · · , pkSN) (with possibly several time the same key).
Finally, the Verify algorithm takes as input an integer N
(possibly equal to 1), a set of messages (m1, · · · ,mN), a set
of public keys (pkS1

, · · · , pkSN), and one signature σ and
test whether the signature is valid or not.

In our anonymous credential system, we should keep the
control on the message signature pairs which could be ag-
gregated together. For this purpose, we add one specific
value, called the message index, and we argue that the Ag-
gregate procedure can yield valid signatures only if all the
input message signature pairs have the same message index.
This gives us the notion of indexed aggregate signature which
we formally define in the following.

3.2 Related Concepts
Regarding the literature, there are only few aggregate sig-

nature schemes and its seems to be a concept which is hard
to build. One consequence is that several alternate notions
can however be found. In [24], the authors address the no-
tion of sequential aggregation. An aggregate signature under
different signing keys has to pass from all the signers to be
produced. We argue that the use of such schemes here will
lose the benefits intended from aggregate signatures, since
in our need, the aggregation has to be done on the fly by the
user in each verification, and without the help of the signers.

More recently, synchronized aggregate signatures have be-
en introduced in [1], based on the work of [22]. In this case,
the aggregation is possible only if the signers are synchro-
nized on a specific value when they produce their individual
signature. Such a policy of synchronization avoids the need
for interactions between signers. We are not far from our
index notion. In fact, the main difference is that a constant
number of aggregations on the same synchronized value is
allowed in the synchronized model, and the security is bro-
ken if the number of aggregations exceeds this bound. In our
case, we don’t impose such a bound since it is undesirable
for designing an anonymous credential system.

3.3 Formal Definitions
An indexed aggregate signature scheme is given by the

following five algorithms.

Setup. On input a security parameter λ, this algorithm
outputs the parameters of the system, which are given
to all algorithms as auxiliary input. In particular, a
message spaceM and an indices space I are specified.

KeyGen. This algorithm, taking on input param and k,
outputs the key pair (skS , pkS) for a signer.

Sign. This algorithm takes as input a message index i ∈ I,
a message m ∈ M and a secret key skS . It outputs a
signature σ on m and i, under the public key pkS .

Aggregate. This algorithm takes as input a message in-
dex i ∈ I and a set of N triplets (pkSn ,mn, σn). It
outputs either an error message ⊥, or a signature σ
on i and (m1, · · · ,mN) under (pkS1

, · · · , pkSN) (with
possibly several time the same key).

Verify. This algorithm takes as input a message index i,
a set of public keys/messages {(pkSn ,mn)}Nn=1 and a
signature σ. It outputs b = 1 if the signature σ is valid
and b = 0 otherwise.

3.3.1 Correctness
We require such a scheme to be correct, i.e. a signature

correctly computed by the signature procedure or the aggre-
gation one is necessarily accepted by the verification algo-
rithm. More formally, for a given λ, param ← Setup(1λ),
N ≥ 1 and i ∈ I, let {(pkSn , skSn)}Nn=1 be a set of key

pairs, {mn}Nn=1 ∈ MN be a set of messages, and σn :=
Sign(i,mn, skSn) be individual signatures for n ∈ [1, N].
An indexed aggregate signature is said correct if the veri-
fication Verify(i, {(pkSn ,mn)}Nn=1, σ) = 1 holds for each σ

such that σ := Aggregate(i, {(pkSn ,mn, σn)}Nn=1).
Next, a secure indexed aggregate signature scheme should

verify the unforgeability property which can be described as
follows, based on the initial work in [6] for standard aggre-
gate signature schemes.

3.3.2 Unforgeability
The aim of an adversary is to forge an aggregate signature.

It thus outputs a valid signature on an index and a list of
public keys and messages. This is considered as a forge if one
message has never been signed with the specified index. A
challenge public key is given to the adversary, and the latter
may have access to a signing oracle denoted Sign. Each
time this oracle is asked on an index i and a message m, we

update the global variable M by adding m to M[i]. More
precisely, the unforgeability experiment is given as follows.

UnforgeabilityAGA (λ)

1. param← Setup(1λ); (pkS , skS)← KeyGen(); M← ε

2. (i, {(pkSn ,mn)}Nn=1, σ)← ASign(skS ,·,·)(param, pkS)

3. Return 1 if

(a) Verify(i, {(pkSn ,mn)}Nn=1, σ) = 1, and

(b) ∃n ∈ [1, N] such that pkSn
= pkS and mn /∈M[i]

We say that an indexed aggregate signature scheme AG
is (t,Nmax, qS , ε)-unforgeable if the probability for an adver-
sary A to win the UnforgeabilityAGA game within time t,
with no more than Nmax individual signatures aggregated in
the forge, after qS queries to the sign oracle is less than ε.

Remark 1 In the following, we consider that we are in the
chosen-key model. It means that an adversary has not to
register the different keys that are involved in a forgery. In
the registered-key model, such a registration is necessary.

3.4 Intuition for Our Construction
Before giving our formal construction, let us take a look

at some difficulties to construct such a scheme and explain
how we get out of it.

Let A be an adversary against the above unforgeability
game which outputs a valid and non trivial aggregate signa-
ture (i, {(pkSn ,mn)}Nn=1, σ). We distinguish several cases.

The first case happens when the index i has already been
seen, but when a new message appears in the list of the
forgery associated with the challenge public key. In this
case, we are able to exhibit an individual forgery against
the aggregate signature scheme upon which our construction
is built, namely the BGLS scheme [6] (augmented with the
trick from [4]). As a consequence, a signature on a message
m in our scheme is close to the BGLS form: H(g1

γ‖g2γ‖m)γ ,
where γ is the signing secret key. It follows that the aggre-
gation is simply the multiplication of the signatures.

The second case happens when the index and all messages
in the forgery have already been seen. It may happen, for
example, when corrupted users collude to aggregate some
differently obtained signatures. To handle this case, the sig-
nature process corresponds to a signature on both the mes-
sage m and the index i, using the BGLS signature scheme
as said above. The security of our scheme regarding such an
attack is next ensured by the fact that it is not possible to
disaggregate aggregated elements. Our signature is then of
the form σ :=

(
i · H(g1

γ‖g2γ‖m)
)γ

.
The third and last case happens when A outputs a new

index i, i.e. an index never involved in adversary’s queries.
Regarding the above form of our signature, it seems hard
to prevent such attack since, for example, the multiplica-
tion of two differently obtained signature with indices i and
i′ introduces the index i × i′ which is new and correct re-
garding the signature verification (admitting that i × i′ is
an acceptable index). To handle this case, we introduce a
control over the indices. We see them as a signature from
some general authority. It follows that the exhibition of a
new index is equivalent to a forgery against the underly-
ing signature scheme. In the following, we choose a Boneh-
Boyen-like signature [5] which one corresponds to a couple

i = (A, s) such that A = (u · g1x)
1
δ+s , where x is some user

secret and δ the signing secret key. Our signature is finally
σ :=

(
A · H(g1

γ‖g2γ‖m)
)γ

.

3.5 Formal Description
We now give a concrete indexed aggregate signature sche-

me, denoted by Agg. As said above, our proposal is based
on the initial work from [6] for standard aggregate signature
schemes, with Boneh-Boyen-like certificates [5] as indices.

Agg.Setup(1λ). It first generates a bilinear environment
(p,G1,G2,GT , e) such that p is a prime number of
length λ, G1, G2 and GT are groups of order p and e is
a bilinear pairing. It also chooses a hash function H :

{0, 1}∗ → G1, and generators g1, u, f
$← G1 and g2

$←
G2. A scalar δ

$← Zp is picked and ∆ := (g1
δ, g2

δ) is
computed. The message space isM∈ {0, 1}∗. The in-
dices space is defined as: I :=

{
((X,Y), (A,B,D)) ∈

(G1×G2)×(G1
2×G2) |A = (u·g1x)

1
δ+s ∧B = fs∧D =

g2
s ∧ X = g1

x ∧ Y = g2
x
}

. In the following, such
an index is said valid if e(A,D · ∆2) = e(u · X, g2),
e(B, g2) = e(f,D) and e(X, g2) = e(g1, Y).

Such an index can not be directly computed (see above
in Section 3.4 why we need such kind of index) and
we need to keep δ secret. Consequently, the Setup
additionally needs to publish a set of valid indices. Let
X :=

{
s ∈ Zp\{−δ}

}
be a polynomial2 set of values in

Zp \{−δ} and let BB :=
{

((X,Y), (A,B,D)) ∈ I | s ∈
X
}

be a set of possible indices. Each signer can in
the following take one index in this set. Finally the
procedure outputs (p,G1,G2,GT , e, g1, g2,∆,H,BB).

Agg.KeyGen(). This algorithm first chooses the secret

γ
$← Zp and computes Γ1 ← g1

γ and Γ2 ← g2
γ . It

returns pkS := Γ = (Γ1,Γ2), skS := γ.

Agg.Sign(γ, i,m). After checking that i is valid, this pro-
cedure produces a signature on m and i by computing
σ :=

(
A · H(g1

γ‖g2γ‖m)
)γ ∈ G1

Agg.Aggregate({σn}Nn=1). The aggregation procedure

returns σa :=
∏N
n=1 σn

Agg.Verify(i, {(Γn,mn)}Nn=1, σ). This procedure returns
1 if i := ((X,Y), (A,B,D)) is valid and if

e(σ, g2) = e(A,

N∏
n=1

Γn,2)·
N∏
n=1

e(H(Γn,1‖Γn,2‖mn),Γn,2)

This construction is correct since one can easily check that
e(σ, g2) = e(

∏N
n=1 [A · H(· · · ‖mn)]γn , g2) = e(A,

∏N
n=1 Γn,2)

·
∏N
n=1 e(H(· · · ‖mn),Γn,2). We also have the following theo-

rem regarding unforgeability, which is proven in Appendix B
under assumptions that are stated in Appendix A.

Theorem 1 The Agg scheme is an unforgeable indexed ag-
gregate signature scheme under the q-ADHSDH assumption
in the chosen-key model for aggregate signature if H is seen
as a random oracle.

2i.e. there exists a polynomial q such that |X | = q(λ).

4. ANONYMOUS CREDENTIALS FROM
AGGREGATE SIGNATURES

We give now our main construction of anonymous creden-
tial schemes based on indexed aggregate signatures.

4.1 Zero-Knowledge Proofs
We need in our construction several zero-knowledge proofs

of knowledge (ZKPK) [19]. Roughly speaking, such a tool
describes the way an entity proves to another one that she
knows a set of secret values α1, . . . , αq verifying a given re-
lation R without revealing any information about her se-
crets. Such proofs are considered secure if they are com-
plete (one knowing the secret is always accepted), (honest-
verifier) zero-knowledge (the transcripts of the proof can be
simulated) and sound (there exists an extractor of the se-
crets, which implies that a prover will be accepted only if she
knows the claimed secrets). In the following, such a ZKPK
is denoted by Pok{α1, . . . , αq : R(α1, . . . , αq) = 1}.

More precisely, we need in the following discrete logarithm
based ZKPK [12, 8] which can be seen as any combination
of discrete logarithm proofs [28], representation proofs [27]
and equality of known discrete logarithm proofs [15].

4.2 Overview of Our Solution
We now informally show how to use an indexed aggre-

gate signature scheme Agg to design a secure anonymous
credential system. A more formal view is given Figure 2

.

OrgKeyGen.

1. (pkO, skO)← Agg.KeyGen()

UserKeyGen.

1. Any skU such that there exists a function UtoI that
maps user secrets to indices.

Obtain/Issue.

1. User computes iU := UtoI(skU) and π := Pok{〈α〉 :
iU = UtoI(α)} and sends iU , π to the organization.

2. Organization checks π and computes and individual sig-
nature σn := Agg.Sign(skO, iU ,mn) for each n ∈ [1, L]
where the mn’s correspond to some attributes related to
the user. The σn’s are sent to the user.

3. The certificate is finally Σ := {σn}Ln=1.

Show/Verify.

1. User first aggregates the different certificates she needs,
as σ ← Agg.Aggregate({σn}Nn=1).

2. User next produces a zero-knowledge proof of knowledge

Pok{〈σ, x〉 : Agg.Verify
(
iU , {(pkOn ,mn)}Nn=1, σ) = 1}

Figure 2: Generic construction

Organizations are signers and a credential on attributes
are signatures. Let us consider a user having obtained sev-
eral credentials on some attributes, may be from different
organizations. Let us assume that this user interacts with a
verifier asking for several attributes. Using the aggregation
procedure on her credentials and related to the requested at-
tributes, this user is able to output a single signature which
can be used to answer the verifier. Three issues arise:

1. users should not be able to share their credentials: so
we introduce indexed aggregate signature schemes ;

User((X,Y), (A,B,D), (Γ1,Γ2)) Organization(γ, {m1, · · · ,ml})
(A,B,D)

−−−−−−−−−−−−−−−−−→
Pok{(X,Y) : e(A,D ·∆2)/e(u, g2) = e(X, g2) ∧ e(B, g2) = e(f,D) ∧ e(X, g2) = e(g1, Y)}

←−−−−−−−−−−−−−−→
∀i ∈ [1, l], do σi ←

(
A · H(g1

γ‖g2γ‖mi)
)γ

σ1, . . . , σl←−−−−−−−−−−−−−−−
∀i ∈ [1, l], check σi
Return cred = (σ1, · · · , σl)

Figure 3: The issuance protocol

User((X,Y), (A,B,D), {(Γn,mn)}Nn=1, {σn}Nn=1) Verifier({(Γn,mn)}Nn=1)

σ ←
∏N
n=1 σn; rB , rD, rX , rY , rA, rσ

$← Z∗p
T1 ← g1rB ; T2 ← B · h1rB ; T3 ← g1rD ; T4 ← D · h2rD
T5 ← g1rX ; T6 ← X · h1rX ; T7 ← g1rY ; T8 ← Y · h2rY
T9 ← g1rA ; T10 ← A · h1rA ; T11 ← g1rσ ; T12 ← σ · h1rσ

T1, T2, . . . , T12−−−−−−−−−−−−−−−−−−−→

Pok
(
rB , rD, rX , rY , rA, rσ : T1 = g

rB
1 ∧ T3 = g

rD
1 ∧ T5 = g

rX
1 ∧ T7 = g

rY
1 ∧ T9 = g

rA
1 ∧ T11 = grσ1 ∧ e(h1, g2)rB e(f, h2)−rD =

e(T2, g2)/e(f, T4) ∧ e(h1, g2)rX e(g1, h2)−rY = e(T6, g2)/e(g1, T8) ∧ e(T10, T4∆2)e(h1, T4∆2)−rAe(T10, h2)−rDe(h1, h2)rArD ·

e(h1, g2)rX = e(uT6, g2) ∧ e(T12, g2)e(h1, g2)−rσe(h1,
∏N
n=1 Γn,2)rA = e(T10,

∏N
n=1 Γn,2)

∏N
n=1 e(H(Γn,1‖Γn,2‖mn),Γn,2))

)
←−−−−−−−−−−−−−−→

Figure 4: The showing protocol

2. the aggregate signature should not be disclose to the
verifier since it compromises the anonymity of the user.
Our solution is to produce a ZKPK (see above) of this
signature (see Remark 2 below) ;

3. as the organization should not be able to use the certi-
fied credentials obtained by an honest user, the index
message should correspond to a secret only known by
the user. This way, different obtained credentials can
only be aggregated if they are related to this secret,
and thus to the same user.

Remark 2 The reader should note that the proof of knowl-
edge is constant-size since a single aggregate signature is
proved to be known, independently of the number of involved
credentials before the aggregation. This brings non-negligible
advantages in bandwidth, specially if credentials are embed-
ded in a smart-card. We argue that this solution is well-
suited for embedded processors since a transmitted bit costs
more than a computed bit into such environments.

4.3 Our Anonymous Credential System
We now describe a concrete instantiation AC of our new

anonymous credential system, based on the indexed aggre-
gate signature scheme we introduced in Section 3.5.

Setup(1λ). As in Section 3.5, generate a bilinear envi-
ronment (p,G1,G2,GT , e) and next uniformly at ran-

dom g1, h1, u, f
$← G1 and g2, h2

$← G2. Finally, let
H : {0, 1}∗ → G1 be a cryptographically secure hash

function. Let ∆ := (g1
δ, g2

δ) for δ
$← Zp be a gen-

eral registration key. The parameters of the system
are param := (p,G1,G2,GT , e, g1, g2, h1, h2, u,∆,H).

OrgKeyGen(). During this step, an organization chooses

uniformly at random γ
$← Z∗p and computes (Γ1,Γ2) :=

(g1
γ , g2

γ). The organization public key is next pkO :=
(Γ1,Γ2) and the corresponding secret key is skO := γ.

UserKeyGen(). User secret keys are skU := (X,Y) where

X ← g1
x and Y ← g2

x for an uniformly picked x
$←

Z∗p. The mapping from user keys to indices is done

by UtoI : x 7→ (u · X)
1
δ+s . This mapping is done

once during some kind of registration step, where the
user interacts with some certification authority know-
ing δ. Such a “certificate” is valid if e(B, g2) = e(f,D),
e(X, g2) = e(g1, Y) and e(A,D ·∆2) = e(u·X, g2). The
set of all “certificates” of all users corresponds to the
set BB of the indexed aggregate signature scheme.

Obtain ↔ Issue. This protocol is given in Figure 3 and
allows a user with index (X,Y), (A,B,D) to obtain a
credential cred = {σi}li=1 on attributes {mi}li=1, issued
by the organization with the public key (Γ1,Γ2).

Show ↔ Verify. This protocol is described in Figure 4
and allows a user, on input several signatures {σn}Nn=1

on attributes {mn}Nn=1 under public keys (Γn,1,Γn,2),
to prove the possession of these certificates to a verifier.
This is done by first aggregating all the signatures and

Keys for L attributes per credential Issuing Protocol
Parameters Credential + User Secret User Issuer Bandwidth

UProve O(L) : {(gi, ei, zi)}Li=1 O(1) O(L) : Gq O(L) : Gq O(1)
Idemix O(L) : {Ri}Li=1 O(1) O(L) : Zn O(L) : Zn O(L− k)
Ours O(1) O(L) O(L) : G2 O(L) : G1 O(L)

Showing Protocol
User Verifier Bandwidth User Verifier Bandwidth

One-Show 1 Organization One-Show N Organizations
UProve O(1) O(1) O(N) : Gq O(N)
Idemix O(L) mult. Zn O(1) : Z O(NL) mult. Zn O(N) : Z
Ours O(1) pair.; O(L) : |G2| O(1) O(NL) pairings O(1)

One-Show 1 Organization n-out-of-L hidden att. K-Multi-Show 1 Organization
UProve O(n) : Gq O(n) : Zq O(K) : Gq O(K)
Idemix O(L) mult. Zn O(n) : Z O(L) mult. Zn O(L) : Z
Ours O(1) pairings; O(L) : |G2| O(1) O(1) pairings; O(L) : |G2| O(1)

Table 1: Comparison with the state of the art

next to prove the knowledge of the resulting signature,
with index ((X,Y), (A,B,D)).

The showing protocol is a zero-knowledge proof of knowl-
edge of values (X,Y), (A,B,D) and {σn}n such that the
aggregation of the latter is a valid credential for the former.
Group elements are committed in the Tis and the protocol
is a standard Schnorr-like proof.

4.4 Security Arguments
The security of our scheme mainly relies on the security

of the chosen indexed aggregate signature scheme (see Sec-
tion 3) and on the security of the ZKPK (see Section 4.1).
More formally, we have the following theorem. Assumptions
are given in Appendix A and proofs in Appendix C.

Theorem 2 The AC anonymous credential system is un-
forgeable under the q-ADHSDH assumption in (G1,G2) and
anonymous under the DDH assumption in G1 if H is seen
as a random oracle.

4.5 Efficiency Comparison
We compare our new proposal with the related work on

anonymous credentials, namely the Idemix [23] and the UP-
rove [26] systems. The whole comparison is given in Table 1.
We fix L as the number of attributes issued by an authority
into a credential and analyse the computational, memory
and bandwidth costs for the keys and protocols.

In our solution, an individual signature is issued for each
attribute by the corresponding organization, whereas an Ide-
mix certificate is constant-length per organization but for
possibly several attributes. However, our signatures are only
composed of one group element whereas an Idemix signature
is much more larger. The best solution, in terms of user
storage, is thus still the UProve one.

Next, this flexibility on prover side allows us to reach a
constant bandwidth, which is not the case in the Idemix and
UProve systems, specially if some attributes are hidden. We
argued that bandwidth is a more precious resource than stor-
age in application we have in mind. More precisely, when
the user has to prove that she owns several attributes coming
from different organization, the space complexity of our solu-
tion is constant. Regarding the time complexity, the prover
only has one multiplication of L different signatures (for the
aggregation process). The other multiplications depending

on L are the ones related to the multiplication of the organi-
zation public keys, which can be easily pre-computed and/or
published. On the other side, in such case, the Idemix and
UProve systems necessitates to produce L different group
signatures or show L different blind signatures respectively.

The next step is certainly to make a true implementation
of our system to test it in concrete situations and make a
complete comparison.

5. CONCLUSION
We proposed a new way to treat anonymous credentials

by using aggregate signatures and we gave a concrete in-
stantiation of this idea. More particularly, we address the
problem of dealing with several credentials certified by sev-
eral different organizations, which case as not been taken
into account by previously known constructions.

We leave as a tricky open problem the construction of a
scheme in the standard model, which appears to be difficult.
Another open problem is to enable statements on hidden
attributes. With our new system, we can hide an attribute
by using some kind of disaggregation, but we can not prove
any statement about a hidden value since we further apply
a hash function on it.

Finally, we note that our scheme is valid only if the size
of the actual indices space is sub-exponential in the size of
the whole space of the possible values, as in the construction
from [1]. We leave as an interesting open problem to show
that there is a reason beneath.

Acknowledgements
This work has been partially supported by the European
Commission through the ICT Program under Contract ICT-
2007-216676 ECRYPT II. We also thanks the anonymous
reviewers for their useful comments.

6. REFERENCES
[1] Jae Hyun Ahn, Matthew Green, and Susan

Hohenberger. Synchronized aggregate signatures: new
definitions, constructions and applications. In ACM
CCS, pages 473–484, 2010.

[2] Mira Belenkiy, Jan Camenisch, Melissa Chase,
Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable proofs and delegatable
anonymous credentials. In CRYPTO, pages 108–125,
2009.

[3] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In TCC, pages 356–374, 2008.

[4] Mihir Bellare, Chanathip Namprempre, and Gregory
Neven. Unrestricted aggregate signatures. In ICALP,
pages 411–422, 2007.

[5] Dan Boneh and Xavier Boyen. Short signatures
without random oracles. In EUROCRYPT, pages
56–73, 2004.

[6] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav
Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT,
pages 416–432, 2003.

[7] Stefan Brands. Rethinking PKI and digital certificates
- building in privacy. PhD thesis, Eindhoven Institute
of Technology, 1999.

[8] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On
the portability of generalized schnorr proofs. In
EUROCRYPT, pages 425–442, 2009.

[9] Jan Camenisch, Markulf Kohlweiss, and Claudio
Soriente. An accumulator based on bilinear maps and
efficient revocation for anonymous credentials. In
PKC, pages 481–500, 2009.

[10] Jan Camenisch and Anna Lysyanskaya. An efficient
system for non-transferable anonymous credentials
with optional anonymity revocation. In
EUROCRYPT, pages 93–118, 2001.

[11] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear
maps. In CRYPTO, pages 56–72, 2004.

[12] Sébastien Canard, Iwen Coisel, and Jacques Traoré.
Complex zero-knowledge proofs of knowledge are easy
to use. In ProvSec, pages 122–137, 2007.

[13] David Chaum. Security without identification:
Transaction systems to make big brother obsolete.
Commun. ACM, 28(10):1030–1044, 1985.

[14] David Chaum and Jan-Hendrik Evertse. A secure and
privacy-protecting protocol for transmitting personal
information between organizations. In CRYPTO,
pages 118–167, 1986.

[15] David Chaum and Torben P. Pedersen. Wallet
databases with observers. In CRYPTO, pages 89–105,
1992.

[16] Jean-Sébastien Coron. Optimal security proofs for pss
and other signature schemes. In EUROCRYPT, pages
272–287, 2002.

[17] Jean-Sébastien Coron and David Naccache. Boneh et
al.’s k-element aggregate extraction assumption is
equivalent to the diffie-hellman assumption. In
ASIACRYPT, pages 392–397, 2003.

[18] Ivan Damg̊ard. Payment systems and credential
mechanisms with provable security against abuse by
individuals. In CRYPTO, pages 328–335, 1988.

[19] Uriel Feige, Amos Fiat, and Adi Shamir.
Zero-knowledge proofs of identity. J. Cryptology,
1(2):77–94, 1988.

[20] Georg Fuchsbauer. Automorphic signatures in bilinear
groups and an application to round-optimal blind
signatures. Cryptology ePrint Archive, Report
2009/320, 2009.

[21] Georg Fuchsbauer. Commuting signatures and

verifiable encryption. In EUROCRYPT, pages
224–245, 2011.

[22] Craig Gentry and Zulfikar Ramzan. Identity-based
aggregate signatures. In PKC, pages 257–273, 2006.

[23] IBM. Identity mixer - Idemix, 2010.

[24] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav
Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random
oracles. In EUROCRYPT, pages 465–485, 2006.

[25] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and
Stefan Wolf. Pseudonym systems. In SAC, pages
184–199, 1999.

[26] Microsoft. U-Prove community technology, 2010.

[27] Tatsuaki Okamoto. Provably secure and practical
identification schemes and corresponding signature
schemes. In CRYPTO, pages 31–53, 1992.

[28] Claus-Peter Schnorr. Efficient identification and
signatures for smart cards. In CRYPTO, pages
239–252, 1989.

[29] Eric R. Verheul. Self-blindable credential certificates
from the weil pairing. In ASIACRYPT, pages 533–551,
2001.

APPENDIX
A. ASSUMPTIONS IN BILINEAR GROUPS

[q-ADHSDH] Asymmetric Double Hidden Strong Dif-
fie-Hellman
Given (g1,∆1 = g1

δ, h, f , g2,∆2 = g2
δ) ∈ G1

4×G2
2, tuples{

(Ai = (h · g1xi)
1

δ+si , Bi = fsi , Di = g2
si , Xi = g1

xi , Yi =

g2
xi)
}q−1

i=1
for si, xi

$← Zp find a new tuple (A,B,D,X, Y)
such that e(A,D ·∆2) = e(h ·X, g2), e(B, g2) = e(f,D) and
e(X, g2) = e(g1, Y).

This problem is an asymmetric variant of the DHSDH
problem and has been proven generically secure in [20]. We
refer the reader to [20] for more analysis.

[co-CDH] Bilinear Computational Diffie-Hellman
Given (g1, g2, g1

a, g2
a, h), find ha, where g1, h ∈ G1, g2 ∈ G2.

[EAE] Element Aggregate Extraction
Given (g1, g1

γ , g1
a, g1

b, g2, g2
γ , g2

a, g2
b, g1

γ(a+b)), find g1
γa

where g1 ∈ G1, g2 ∈ G2 and γ, a, b ∈ Zp.
In [17], the authors show how a solver for the EAE prob-

lem can be use for computing a co-CDH challenge. The
converse is straightforward. Therefore the EAE problem is
equivalent to the co-CDH problem.

[DDH] Decisional Diffie-Hellman

Given (g, ga, gb, gc), decide whether gc = gab or gc
$← G.

B. UNFORGEABILITY OF OUR INDEXED
AGGREGATE SIGNATURE SCHEME

We prove here Theorem 1 about the unforgeability prop-
erty of our indexed aggregate signature scheme.

Proof. Consider an adversary A that, after receiving pa-
rameters (g1, g2, u,∆), a valid set BB := {i := ((X1, X2),
(A, s))} such that |BB| := q(λ) for some polynomial λ, and

a challenge public key Γ, is allowed to ask for q signatures
σi on index/message pairs (ii,mi) of her choice and outputs
a valid aggregate signature (i∗, {(Γn, mn)}N∗n=1, σ∗) for an
index i∗ := ((X∗,1, X∗,2), (A∗, B∗, D∗)). Let M [i] denote the
messages issued on index i during the whole attack.

We distinguish three types of forgers. An adversary A is
called of type I if i∗ 6∈ BB and of type II if i∗ ∈ BB. A is called
of type IIa if there exists n ∈ [1, N] such that Γn = Γ and, for
all i ∈ BB, mn 6∈M [i]. A is called of type IIb if there exists
n ∈ [1, N] and i 6= i∗ such that Γn = Γ and mn ∈ M [i]. We
will use the first type to break a q-ADHSDH challenge, the
second to break a co-CDH challenge and the last to break an
EAE challenge. Since, the q-ADHSDH assumption implies
the others, theorem follows. Regarding the random oracle,
a table H[m] is maintained for each reduction to answer the
same value for identical queries. Let ζ, 0 < ζ < 1, be a
probability we will later optimize.

Type I. Let (g1,∆1, h, f, g2,∆2, {(Ai, Bi, Di, Xi, Yi)}q−1
i=1)

be a uniformly generated q-ADHSDH challenge. We set
BB := {(Xi, Yi), (Ai, Bi, Di)}, u := h and Γ := (g1

γ , g2
γ)

for γ
$← Zp. We supply (g1, g2, u,Γ,∆) and BB to adver-

sary A. A hash query for a message m is simulated as g1
cm

for cm
$← Zp. The signing query on (ii,m) is answered as

(Aiig1
cm)γ . A eventually outputs (i∗, {(Γn, mn)}N∗n=1, σ∗)

where i∗ 6∈ BB. i∗ is returned as solution the initial problem.

Type IIa. Let (g1, g2, g1
a, g2

a, h) be a uniformly gener-
ated bilinear CDH challenge. We pick δ, α, β, s1, x1, . . . , sq,

xq
$← Zp, set u := g1

α, f := g1
β ,∆ := (g1

δ, g2
δ). For

i ∈ [1, q], we set ii := ((g1
xi , g2

xi), (g1
α+xi
δ+si , si)). Parame-

ters (g1, g2, u, f,Γ,∆,BB) are supplied to adversary A to-
gether with Γ := (g1

a, g2
a) as challenge public key. For a

hash query on m, if m := Γ||m′ for some m′, we answer by
hg1

cm with probability ζ. Otherwise, we answer by g1
cm .

For a sign query on (i,m), if Hsim(m) = g1
cm , we answer by

(g1
γ)

α+xi
δ+si

+cm . Otherwise we fail.
A eventually outputs (i∗, {(Γn, mn)}N∗n=1, σ∗). Since the

forgery is of type IIa, i∗ ∈ BB and there exists n ∈ [1, N]
such that Γn = Γ and mn 6∈M [i] for all i ∈ BB. We continue
only if Hsim(mn) = hg1

cmn and Hsim(mi) = g1
cmi for all

i ∈ [1, N∗] such that i 6= n and Γi = Γ. In this case, we are
able to compute[

σ∗ ·
N∗∏
i=1

[
Γi,1

−
α+xi∗
δ+si∗

−cmi
]]t−1 mod p

= ha

where t := |{i | (Γi,mi) = (Γ,mn)}|. Intuitively, since mn

has never been queried and hash responses are uniformly
distributed, there is a non-negligible probability for the re-
duction not to fail. But we can’t do this if mn has already
been queried with probability 1. So we must handle forgers
of type IIb differently.

Type IIb. Let (g1, g1
γ , g1

,g1
b, g2, g2

γ , g2
a, g2

b, g1
γ(a+b))

be a uniformly generated EAE challenge. We pick δ, α, β,

s1, . . . , sq
$← Zp, set u := g1

α, f := g1
β , ∆ := (g1

δ, g2
δ).

We then uniformly choose k
$← {1, . . . , q} and x1, . . . , xk−1,

x′k, xk+1, . . . , xq
$← Zp. For i ∈ [1, q], i 6= k, we set ii :=

((g1
xi , g2

xi), (g1
α+xi
δ+si , si)). For i = k we set ik := ((g1

bg1
x′k ,

g2
bg2

x′k), ((g1
bg1

α+x′k)
1

δ+si , si)). One can check that ik is a

valid index : e(Xk,1, g2) = e(g1, g2)b+x
′
k = e(g1, Xk,2) but we

don’t know xk := b+ x′k. Parameters (g1, g2, u, f,Γ,∆,BB)
are supplied to adversary A. For a hash query on m, if

m := Γ||m′ for some m′, we answer by (g1
a)

1
δ+sk g1

cm with
probability ζ. Otherwise, we answer by g1

cm . For a sign
query on (i,m), if Hsim(m) = g1

cm and i 6= ik, we answer by

(g1
γ)

α+xi
δ+si

+cm . If Hsim(m) = (g1
a)

1
δ+sk g1

cm and i = ik, we
answer by

(g1
γ)

α+x′k
δ+sk

+cm(g1
γ(a+b))

1
δ+sk =

(
(ug1

b+x′k)
1

δ+skHsim(m)
)γ

We fail in the other cases.
A eventually outputs (i∗, {(Γn, mn)}N∗n=1, σ∗). Since the

forgery is of type IIb, there exists n ∈ [1, N] and i 6= i∗ such
that Γn = Γ and mn ∈M [i]. We continue only if i∗ = ik and
Hsim(mi) = g1

cmi for all i ∈ [1, N∗]. In this case, we are able
to compute[

σ∗ ·
N∗∏
i=1

[
Γi,1

−
α+x′k
δ+sk

−cmi

]](δ+sk)t−1 mod p

= g1
γb

It remains to show that both reductions of type II will
not fail with non-negligible probability. Following Coron’s
analysis (cf. [16, 6]), an optimal bound is given by ζ :=
O(1/(qS + Nmax)). More explanations are given in the full
version of our paper.

C. PROOF FOR OUR ANONYMOUS CRE-
DENTIAL SYSTEM

We first show that the showing protocol is a honest-verifier
zero-knowledge proof of knowledge. We must show that this
protocol is complete, can be simulated and has an extractor.

Lemma 3 The showing protocol is complete.

Proof. Let assume that an honest prover in possession
of {σn}Nn=1 correctly computed σ, T1, . . . , T12. We have e(T6,
g2)e(h1, g2)−rX e(g1, h2)rY /e(g1, T8) = e(Xh1

rXh1
−rX , g2)

e(g1, Y
−1h2

−rY h2
rY) = 1 so this equations proves that (T6,

T8) contains a valid Diffie-Hellman tuple. The same holds
for the values contained in (T2, T4). We have e(T10, g2)e(,
T10h2)−rDe(h1, T4∆2)−rAe(h1, h2)rArD = e(Ah1

rAh1
−rA ,

Dh2
rDh2

−rD∆2) and e(uT6, g2)e(h1, g2)−rX = e(u Xh1
rX

h1
−rX , g2) so the values in T10 and T4 are a signature of the

value in T6. Finally we have e(T12, g2)e(h1, g2)−rσ = e(σ
h1
rσh1

−rσ , g2) = e(A,
∏
n Γn,2)

∏
n e(H(Γn‖mn),Γn,2) = e(

T10h1
−rA ,

∏
n Γn,2)

∏
n e(H(Γn‖mn),Γn,2) so the value in

T12 is a valid aggregate certificate.

Lemma 4 (ZK) For an honest-verifier, transcripts of the
showing protocol can be simulated if DDH is hard in G1.

Proof. As in a Schnorr-like proof, we construct a sim-

ulator by randomly choosing B,D,X, Y,A, σ
$← G1 and

rB , rD, rX , rY , rA, rσ
$← Zp. We set T1 := g1

rB , T2 :=
Bh1

rB , and for the rest as well. Under the DDH assumption
in G1, the pair (T1, T2) and the others are indistinguishable
from one outputs by a real prover. Next, we choose random

values c, sB , sD, sX , sY , sA, sσ
$← Zp and compute the rest of

the proof of knowledge accordingly. Values (T1, . . . , R1, . . . ,
c, sX , . . .), where values {Ri}, c, {sj} come from the proof

of knowledge, satisfy the verification equations and are dis-
tributed as in a real transcript.

Lemma 5 (PK) The showing protocol has an extractor.

Proof. Using the rewinding technique, we extract values
r̃B , r̃D, r̃X , r̃Y , r̃A, r̃σ, s from the proof of knowledge. From
these values we are able to compute σ̃ = T12 · h1

−r̃σ which
is a valid aggregate credential on index (X̃, Ỹ), (Ã, B̃, D̃)

where B̃ := T2 · h1
−r̃B , D̃ := T4 · h1

−r̃D , X̃ := T6 · h1
−r̃X ,

Ỹ := T8 · h1
−r̃Y and Ã := T10 · h1

−r̃A .

Lemma 6 (Correctness) The AC1 scheme is correct.

Proof. The scheme is correct if the verification is cor-
rect, so the correctness of the anonymous credential scheme
follows from the protocol completeness (cf. Lemma 3).

Lemma 7 (Unforgeability) The AC scheme is unforge-
able if the q-ADHSDH problem is hard and H is seen as a
random oracle.

Proof. We reduce an adversary A against the unforge-
ability of our anonymous credential system AC to an adver-
sary B against the unforgeability of our indexed aggregate
signature AG. B has access to her own random and signa-
ture oracles H and Sign. Let (g1, u, f, g2,∆,BB) be system
parameters for the AG scheme and Γ be challenge public
key. B picks h1 ∈ G1, h2 ∈ G2 and supplies parameters
(g1, h1, u, f, g2, h2) to A. To simulate AddO(j)3, we gen-

erates for sj
$← Zp Γj := (Γ,1g1

sj ,Γ,2g2
sj). To simulate

hash queries Hsim(m) we do: if m can be parsed as G‖H‖m′
where (G,H) is a valid Diffie-Hellman pair, then we make

a call to B’s own oracle h ← H(Γ,1‖Γ,2‖m′), pick c
$← Zp

and set w ← hg1
c and record H[m] ← (w, c). Else, we call

h← H(m) and record H[m]← (h,⊥).
We introduce a subroutine Signsim(j, i,m) in order to sim-

ulate individual signatures on index i from signer j. We
retrieve the public key (Γj,1,Γj,2), simulate a hash query
Hsim(Γj,1‖Γj,2‖m) and retrieve the corresponding (w, c). We
next carry out a signature query s← Sign(i,m) and return
σ := s

(
Aw
)sjΓ,1c.

To simulate the GetCred oracle, we simply follow the is-
suing protocol Figure 3 with subroutine Signsim(j,usk[i],m)
in order to issue credentials on each m ∈ {mi}i∈[l]. To sim-
ulate the SndToI oracle, we distinguish the two part of the
protocol. Regarding the first part of the issuing protocol,
adversary A supply a proof of knowledge of her keys we ex-
tract by rewinding techniques. We are then able to recover
ĩ and record it usk[i] ← ĩ. Regarding the second part, B is

able, thanks to ĩ, to issue credentials by querying the sub-
routine Signsim(j, ĩ,m) for each m ∈ {mi}i∈[l]. There is no
problem to simulate other oracles.

Let’s assume that A successfully pass the showing proto-
col on tuples {(jn,mn)}Nn=1 she specified. From Lemma 5

we are able to extract a tuple (̃i∗, σ∗) such that σ∗ is a valid

3To simplify, we disallow the OrgKG oracle. We can add it
and lose a factor linear in the number of signers. Moreover,
this oracle is relevant in case of indistinguishability property,
not for the unforgeability one.

aggregate credential on (̃i∗, {(jn,mn)}Nn=1). We retrieve ran-
dom sjn ’s for all n ∈ [N] and compute

σ := σ∗ ·
N∏
n=1

[(
Ã∗H(Γ,1‖Γ,2‖mn)g1

cn
)−sjn · Γ,1−cn]

B returns (̃i∗, {(Γ,mn)}Nn=1, σ) as response to her challenge.
First we show that signatures outputs by the Signsim sub-

routine are correct. We have e(σ, g2) = e(s, g2)e(
(
Aw
)sj

Γ∗,1
c, g2) = e(A,Γj,2)e(Hsim(Γj,1‖Γj,2‖m),Γj,2) so σ is a

valid signature on (i,m) under Γj . Then we show that the
computed AG forgery is valid if the AC forgery is valid. If
σ∗ is a valid aggregate credential, then

σ∗ =

N∏
n=1

Signsim(jn, ĩ∗,mn) =

N∏
n=1

[(
ÃHsim(Γj‖mn)

)γjn]
=

N∏
n=1

[
Sign(̃i∗,mn)

(
ÃH(Γ‖mn)g1

cn
)sjnΓ,1

cn
]

We conclude that σ =
∏N
n=1 Sign(̃i∗,mn) therefore σ is a

valid aggregate signature on (̃i∗, {(Γ,mn)}Nn=1). Finally we
have to show that, if the AC forgery is non trivial, then the
computed AG forgery is non trivial. This is done by distin-
guish three types of forger that match the one for the AG
scheme (cf. the proof of Theorem 1 given in Appendix B).

Type I. The extracted index ĩ does not match an existing
user secret key usk[i] for i ∈ HU ∪ CU . In this case, B
successfully wins the game against AG.

Type II. The extracted index ĩ matches an existing user
secret key usk[i] for i ∈ HU ∪ CU . If A successfully wins
the game, there is n ∈ [N] such that jn ∈ HO and mn 6∈
{mi}i∈[l] for all messages {mi}i∈[l] A asked. This means
that honest organization jn did not issue a credential on
mn. In particular, there was no call on Signsim(̃i∗,mn) and,

subsequently, no call on B’s oracle Sign(̃i∗,mn). Hence mn 6∈
M [̃i∗] and that B successfully wins the game against AG.

Lemma 8 (Anonymity) The AC scheme is anonymous if
the DDH problem is hard in G1.

Proof. Let (g, v := g1
a, h, w := hd) be a DDH challenge

in G1. Among parameters, we set g1 ← g. The other are
honestly generated. We uniformly pick a bit b ∈ {0, 1}.
Hash queries are simulated with a new random value in G1

for any new query. To simulate the SndToU oracle, we sim-
ply follows the Obtain algorithm Figure 3. Since checks are
done during the protocol, we are sure that only valid creden-
tials will be recorded by user i. To simulate the Ch oracle,

we pick r, r′
$← Zp and computes (v′, w′) ← (vrgr

′
, wrgr

′
).

Tuple (g, v′, h, w′) is a randomly distributed DDH instance
derived from the challenge. We then compute (T11, T12) :=
(v′, σw′) where σ is the aggregation of credentials from user
ib. the same is done for values X, Y and A. From these
values, we simulate a protocol transcript t as specified in
Lemma 4. t is returned to A. There is no problem to simu-
late other oracles. Finally, A outputs a bit b′. We output 1
if b′ = b and 0 otherwise as response to our own challenge. If
the challenge is a DDH tuple, then algorithm A has advan-
tage ε to distinguish b. If it is a random tuple, then the Ti’s
are independent of b and A has advantage 0 to distinguish
the underlying user. We conclude B has advantage ε/2 to
solve the DDH challenge.

