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Abstract. We consider the security of compression functions built by combin-
ing smaller perfectly secure compression functions modeled as fixed input length
random oracles. We give tight security bounds and generic attacks for various pa-
rameters of these constructions and apply our results to recent proposals of block
cipher-based hash functions.
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1 Introduction

Cryptographic hash functions are fundamental primitives in information security [17]
used in a variety of applications such as message integrity, authentication schemes or
digital signatures. Mathematically speaking, it is a function from {0, 1}∗, the set of all
finite length bit strings, to {0, 1}l where l is the fixed size of the hash value. Ideally, a
cryptographic hash function should possess the following properties:

– collision resistance: finding a pair x 6= x′ ∈ {0, 1}∗ such that H(x) = H(x′) should
require 2l/2 operations

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ 6= x such that H(x) =
H(x′) should require 2l operations

– preimage resistance: for a given y ∈ {0, 1}l, finding a x ∈ {0, 1}∗ such that H(x) = y
should require 2l operations.

All currently used hash functions are so-called iterated hash functions which are designed
by iterating a compression function with a fixed-length input, say h : {0, 1}l+l′ → {0, 1}l.
The iterated hash function H is then defined thanks to domain extension methods. The
most popular one is the Merkle-Damgård method [5,18] which consists in first padding
the input x so that the length of the padded message is a multiple of l′ and outputing,
for a padded message consisting of m l′-bit blocks Pad(x) = x1‖ . . . ‖xm, the value ym
defined by the recurrence yi = h(xi‖yi−1), where y0 is a fixed constant of {0, 1}l. The yi’s
are called chaining variables. The popularity of the MD method comes from the fact that
the hash function obtained is at least as resistant to collision attacks as the compression
function. However, recent results have highlighted the intrinsic limitations of the MD
approach [8,9] and motivated the study of other domain extension methods [1,4].

Most popular hash functions (e.g. MD5, SHA1) make use of compression functions
build “from scratch”, not appealing to any lower-level primitive. Another direction of re-
search consists in trying to turn a block cipher into a compression function. This approach
has been revived by the recent attacks on hash function using compression functions of
dedicated design [28,27]. The question of how to turn a block cipher into a single block
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length (SBL) compression function (i.e. whose output length is the same as the block
length of the block cipher) can be more or less considered as closed since the systematic
study of Preneel et al. [23] and Black et al. [2]. However, the block length of the most
trusted and standardized block ciphers such as DES and AES is too short to prevent
collision attacks by the birthday paradox on SBL hash functions based on them. This is
why there has been much effort in order to build a double block length (DBL) or more
generally a multiple block length (MBL) compression function whose output is twice (or
more) the block length of the block cipher. Most of the earlier proposals [3,15,16,22,24]
turned out to have weaknesses [10,15]. Proofs of security for block cipher-based hash func-
tions date back to Winternitz [29], who used the ideal cipher model of Shannon [25] to
prove the security of the Davies-Meyer scheme against preimage attacks. Black et al. [2]
used the same paradigm to study all the natural ways of building SBL compression func-
tions, a work which had been initiated in [23]. Hirose [6,7] demonstrated the security of a
family of DBL compression functions using two independent block ciphers with key length
twice the block length, again in the ideal block cipher model. However, no secure DBL
scheme using block ciphers with key length equal to the block length has been proposed
so far. Nandi et al. [20] proposed DBL schemes with better rates than those of Hirose
and claimed to have proved that an adversary must make Ω(22n/3) oracle queries to get
a collision and Ω(24n/3) oracle queries to get a preimage. However, in light of the attacks
presented in [11] (where a preimage attack requiring only O(2n) queries is described), we
spotted a mistake in the security proof of [20]. One of the goal of this paper is to remedy
the strategy they adopted.

At Asiacrypt ’06 [21], Peyrin et al. presented a general framework to analyse how
to combine secure compression functions in order to obtain compression functions with
longer output. This approach had already been adopted in a series of papers [12,13,14]
where partial answers were given thanks to error-correcting codes theory. Analysing two
types of generic attacks, Peyrin et al. derived necessary conditions for the compression
functions of their framework to be secure. Nevertheless, no security proofs were given.
The aim of this paper is to analyse the constructions of the general framework introduced
in [21] in a proof oriented manner. Though we will work in the fixed input length (FIL)
random oracle model, this must be understood as a first step in the systematic study of
MBL compression functions based on block ciphers.

The paper is organized as follows. In section 2 we establish the notations and some
useful lemmas. In section 3 and 4 we carry out the security analysis for preimage resistance
and collision resistance respectively. In section 5 we apply our results to previous proposals
of block cipher-based hash functions and we draw our conclusions and propose future work
in section 6.

2 Definitions and Notations

Basic Notations. In all the following, In will denote the set {0, 1}n, and F(a, b) the
set of all functions from {0, 1}a to {0, 1}b. We will often consider vectors of elements
of In of various length which will be denoted by bold letters. For a binary vector l =
(l1, . . . , lr) ∈ {0, 1}r and X = (X1, . . . , Xr) ∈ (In)r, X · lT = l1X1⊕· · ·⊕ lrXr. Similarly,
for a binary matrix L = [lT1 , . . . , l

T
s ] ∈Mr,s({0, 1}), X ·L is the vector (X · lT1 , . . . ,X · lTs ).

Given two vectors X = (X1, . . . , Xr) and Y = (Y1, . . . , Ys), X‖Y will denote the vector
(X1, . . . , Xr, Y1, . . . , Ys). Finally, ‖·‖H will denote the Hamming weight of a vector and E
the expected value of a random variable.

Generic Constructions. The aim of this paper is to analyse the security of a very
general class of compression functions build from smaller secure compression functions.
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Namely, our building blocks will be t compression functions f (1), . . . , f (t) taking each k
n-bit blocks as input and outputing one n-bit block. For the security analysis, we will
assume that these functions are independent random oracles. The larger compression
function will take as input m n-bit message blocks and c n-bit chaining variable blocks,
which will be denoted respectively M = (M1, . . . ,Mm) and H = (H1, . . . ,Hc). These
blocks will be named external input blocks to distinguish them from the t∗k input blocks
to the inner compression functions, which will be named internal input blocks. They are
obtained as linear combinations of the external input blocks. Namely, for each i ∈ [1..t],
there is a binary matrix Ai ∈ M(m+c,k)({0, 1}) such that the input to the i-th internal
compression function is M‖H · Ai.
The output blocks of the internal compression functions

F = (f (1)(M‖H · A1), . . . , f (t)(M‖H · At))
are then mixed by a linear output layer B ∈ M(t,c)({0, 1}) to give the external output
blocks H ′ = (H ′1, . . . ,H

′
c) according to H ′ = F ·B. In all the following, it will be assumed

that B has full rank (otherwise the external output blocks are linearly dependent, which
is clearly undesirable).
A compression function construction h is thus completely determined by the parameters
(c, t, k,m) and the input and output layers (Ai)i∈[1..t] and B. The compression function
obtained once the internal compression functions f (1), . . . , f (t) are instantiated will be
noted h(f(1),...,f(t)). The construction can be summarized by the formula (see also Fig. 1)

h(f(1),...,f(t))(M‖H) =
(
f (1)(M‖H · A1), . . . , f (t)(M‖H · At)

)
· B. (1)

A more general framework could encompass a feedforward of the external input blocks,

A1,...,t
H1

h
f(1) f(2) f(i) f(t)

k blocks
m + c blocks

Mm

H′
ioutput

M1 Mi Hi Hc

H′
1 H′

c

variablemessage chaininginput
B

c blocks
Fig. 1. The compression function h taking (m + c) n-bit blocks in input and delivering c n-bit
output blocks. It is build from t compression functions f (i) taking k n-bit input blocks and
outputing one n-bit block.

i.e. allowing to xor some external input blocks with some internal output blocks. Though
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it would definitely be useful in the ideal block cipher model, we do not believe this would
strengthen in any way the constructions in the random oracle model, and thus we consider
this feature as out of the scope of the article.
In the following, we will often consider linear combinations of the coordinates of the
function h. For this, we will use the following notations. For x ∈ {0, 1}c, Gx will be the
function

Gx : M‖H 7→ h(f(1),...,f(t))(M‖H) · xT .
Alternatively, Gx may be seen as a linear combination of the t functions M‖H 7→
f (i)(M‖H · Ai). Indeed, writing y = x · BT ∈ {0, 1}t, one has

Gx(M‖H) = (f (1)(M‖H · A1), . . . , f (t)(M‖H · At)) · yT .

It will often be more convenient to define the set Sx of “active” inner compression func-
tions, i.e. the set of integers j ∈ [1..c] such that the j-th coordinate of x · BT is 1. Then
Gx can be expressed by

Gx(M‖H) =
⊕
j∈Sx

f (j)(M‖H · Aj).

Security Model. In the following we will analyse the resistance of the compression func-
tions we just described against preimage attacks and collision attacks. An adversary will
be an algorithm with access to oracles for the inner compression functions f (1), . . . , f (t).
Given a finite set S, s $←− S denotes the operation of selecting s in the probability space S
endowed with the uniform distribution. We will work in the random oracle model, mean-
ing that the inner compression functions are uniformly and independently selected in the
set F(kn, n). When these functions are asked queries from an algorithm, their output is
uniform and independent from all other outputs, but consistent with answers to queries
already asked. We now define the preimage and collision resistance of the compression
function constructions.

Definition 1 (Preimage resistance of a compression function). Let h be a (c, t, k,m)-
compression function construction and let A be an adversary. Then the advantage of A
in finding a preimage for h is the real number

Advpre
h (A) = Pr

[
(f (1), . . . , f (t)) $←− F(kn, n)t; H ′ $←− (In)c;

M‖H $←− A(H ′) : h(f(1),...,f(t))(M‖H) = H ′
]
.

We associate to each compression function construction h the insecurity measure

Advpre
h (q) = max

A
{Advpre

h (A)}

where the maximum is taken over all adversaries making at most q oracle queries to each
inner compression function f (1), . . . , f (t).

Definition 2 (Collision resistance of a compression function). Let h be a (c, t, k,m)-
compression function construction and let A be an adversary. Then the advantage of A
in finding a collision for h is the real number

Advcoll
h (A) = Pr

[
(f (1), . . . , f (t)) $←− F(kn, n)t; (M1‖H1,M2‖H2) $←− A :

M1‖H1 6= M2‖H2 ∧ h(f(1),...,f(t))(M1‖H1) = h(f(1),...,f(t))(M2‖H2)
]
.
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We associate to each compression function construction h the insecurity measure

Advcoll
h (q) = max

A
{Advcoll

h (A)}

where the maximum is taken over all adversaries making at most q oracle queries to each
inner compression function f (1), . . . , f (t).

For the remainder of this paper we will make the following classical assumptions regarding
the adversaries. First, they are computationally unbounded, in consequence of what we
can restrain ourselves wlog to deterministic adversaries (so that we do not have to take
into account any more the randomness coming from the random choices of the algorithm).
Second, an adversary does not make the same oracle query more than once. Third, we
will restrain ourselves to adversaries making exactly q queries to each inner compression
function. These assumptions does not restrict the generality of the analysis in that for
any adversary A asking at most q queries there exists another adversary A′ verifying the
assumptions that achieves at least the same advantage as A.

Type I Constructions. A natural requirement for the compression functions studied
here would be that the image of two distinct inputs by any linear combination of the
output blocks are independent. This is generally not the case, and compressions functions
which does not possess this property are subject to devastating attack called DF attacks
(degrees of freedom) in [21]. This feature is achieved by letting every external output
block depend on all external input block, no matter which invertible transformations
of the external inputs and outputs are used. Expressing it mathematically yields the
following definition.

Definition 3 (Type I (for Independent) compression function construction).
A (c, t, k,m)-compression function construction will be said to be of type I iff for all
x ∈ {0, 1}c \ {0}, ⋂j∈Sx

kerAj = {0}.
For such constructions, one can prove the following property (the proof is given in Ap-
pendix A).

Lemma 1. Let h be a (c, t, k,m) compression function construction of type I. Then
for all x ∈ {0, 1}c \ {0}, and for all distinct M1‖H1 and M2‖H2, Gx(M1‖H1) and
Gx(M2‖H2) are uniformly random and independent.

Not all parameter sets permit to build type I compression function constructions. More
precisely, one has the following necessary condition, which was proved in [21].

Lemma 2 ([21]). Let h be a (c, t, k,m) compression function construction of type I.
Then necessarily ∀x ∈ {0, 1}c \ {0}, ‖x · BT ‖H ≥ m+c

k . In other words, B must have
minimal distance at least dm+c

k e.

Computable Inputs. In order to make our explanations more rigorous, we will need
the following notions of computability, which are generalizations of concepts introduced
in [20]. Informally speaking, once an adversary has made certain queries to the inner
compression functions, we want to define for each M‖H the number of coordinates of
h(M‖H) the adversary is able to compute.

Definition 4 (Gx-computable input). Let Q1, . . . ,Qt ⊂ (In)k be sets of queries to
each of the inner compression functions. For x ∈ {0, 1}c, we will say that an external input
M‖H ∈ (In)m+c is Gx-computable with respect to these sets of queries if M‖H ·Ai ∈ Qi,
for each i ∈ Sx.
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It is easy to verify that given sets of queries Q1, . . . ,Qt and x1, . . . , xr ∈ {0, 1}c, M‖H
is Gxi

-computable for all i ∈ [1..r] implies that M‖H is Gx-computable for all x ∈
Vec(x1, . . . , xr). It is thus natural to give the following definitions.

Definition 5 (V -computable input). Let V be a subspace of {0, 1}c, V 6= ∅, let
Q1, . . . ,Qt ⊂ (In)k be the sets of queries to each of the inner compression functions.
We will say that an external input M‖H ∈ (In)m+c is V -computable with respect to
these sets of queries if M‖H is Gx-computable for all x ∈ V .
Let VM‖H be the biggest subspace such that M‖H is V -computable (possibly reduced to
{0}). If r is the dimension of VM‖H , we will say that M‖H is r-computable. We will
also talk of h-computable input when r = c and of uncomputable input when r = 0 .

Definition 6 (Maximal number of (at least) r-computable inputs with q queries).
Let h be a compression function construction and q ≥ 1. We define the maximal number
of (at least) r-computable inputs with q queries βr(q) as being

βr(q) = max
Q1,...,Qt

#{M‖H ∈ (In)m+c | M‖H is at least r-computable}

where the maximum is taken over all the possible sets of q queries to the inner compression
functions.
We will also need the following slightly different notion for r = 1:

β′1(q) = max
x∈{0,1}c\{0}

max
Q1,...,Qt

#{M‖H ∈ (In)m+c | M‖H is Gx-computable}

where the maximum is taken over all the non-zero linear combinations of output blocks
and over all the possible sets of q queries to the inner compression functions.

The following proposition is rather obvious and given without proof.

Proposition 1.
q ≤ βc(q) ≤ βc−1(q) ≤ . . . ≤ β1(q).

β1(q) and β′1(q) capture approximately the same characteristic of the compression function
for it is immediate to verify that

β′1(q) ≤ β1(q) ≤ 2cβ′1(q). (2)

In our security analysis, we will make an extensive use of the following lemma (see the
proof in Appendix A).

Lemma 3 (Independency lemma). Let Q1, . . . ,Qt ⊂ (In)k be sets of queries to the
inner compression functions such that M‖H is r-computable. Let (x1, . . . , xr) be a basis
of VM‖H , and X1, . . . , Xr, X ∈ In. Then ∀x ∈ {0, 1}c \ VM‖H ,

Pr[Gx(M‖H) = X | Gx1(M‖H) = X1, . . . , Gxr
(M‖H) = Xr] =

1
2n
.

More generally, if H ′ is such that for all i ∈ [1..r], H ′ · xTi = Xi, then

Pr[h(M‖H) = H ′ | Gx1(M‖H) = X1, . . . , Gxr
(M‖H) = Xr] =

1
2(c−r)n .
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3 Security Analysis for Preimage Resistance

In this section we begin with providing a security bound to preimage attacks for the
constructions of the general framework studied in this paper. Then we show that this
security bound is tight by analysing an attack whose advantage is close to the security
bound.

Theorem 1 (Security bound for preimage resistance). Let h be a (c, t, k,m)-
compression function construction (non necessarily of type I) with parameter β1(q) defined
by definition 6. Then

Advpre
h (q) ≤ 1

2n
+
β1(q)
2cn

.

Proof. Let A be a preimage-finding adversary attacking the compression function h. We
suppose wlog that the random input H ′ to the adversary is 0. We first define Preim
as being the set of external inputs M‖H which are h-computable with respect to the
final sets of queries of A and such that h(f(1),...,f(t))(M‖H) = 0. First of all, if A does
not find any external input in this set, its probability of success is very low. Indeed,
A is bound to output an M‖H which is not h-computable. According to Lemma 3,
the probability for this output to be a good preimage is ≤ 1/2n. Therefore we have
Pr[A wins] ≤ 1/2n + Pr[Preim 6= ∅].
We now bound Pr[Preim 6= ∅]. For this, we analyse the behavior of A in a sequential
manner: A makes its queries to the inner functions in a certain order. During this process,
each external input M‖H goes through successive states: either it is uncomputable, or it
is r-computable and still a potential candidate to be mapped on to 0, or it is r-computable
and discarded because there exists x ∈ VM‖H such that Gx(M‖H) 6= 0. More precisely,
consider partial sets of queries Q′1, . . . ,Q′t ⊂ (In)k. We will say that an external input
M‖H is compatible with these partial sets of queries if ∀x ∈ VM‖H , Gx(M‖H) = 0. Note
that an external input which is h-computable with respect to the final sets of queries of A
was necessarily 1-computable at some stage in the sequential queries of A. Said differently,
an external input cannot “jump” from the state uncomputable to a state where it is r-
computable for r > 1 with one single query because one single query never enables to
compute more than one output block or linear combination of output blocks1. When it
exists, we will note G1

M‖H the linear combination of output blocks associated with the
first x ∈ {0, 1}c \ {0} such that M‖H is Gx-computable. Let us define the set Pot1 as
being the set of all M‖H such that, at some stage in the sequential queries of A, M‖H
was 1-computable and compatible. Then one clearly has Pot1 ⊃ Preim, so that

Pr[M‖H ∈ Preim] = Pr[M‖H ∈ Preim|M‖H ∈ Pot1] · Pr[M‖H ∈ Pot1].

The key point in the proof is the fact that according to Lemma 3, one has, for all M‖H,

Pr[M‖H ∈ Preim|M‖H ∈ Pot1] ≤ Pr[h(f(1),...,f(t))(M‖H) = 0|M‖H ∈ Pot1]

≤ 1
2(c−1)n

.

In consequence,

Pr[Preim 6= ∅] ≤ 1
2(c−1)n

∑
M‖H

Pr[M‖H ∈ Pot1].

1 Suppose that one single query enables to compute both Gx1(M‖H) and Gx2(M‖H). This
means that all the other queries necessary to compute them have been made previously. But
this implies that M‖H is already Gx1⊕x2 -computable, so that in fact the computability of
M‖H has only been increased by 1.
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Now we want to bound the sum
∑

M‖H Pr[M‖H ∈ Pot1]. Recall that by the definition
of Pot1, M‖H ∈ Pot1 is the event that M‖H is at least 1-computable with respect to
the final sets of queries of A, and G1

M‖H(M‖H) = 0. Now conditioning on the event
that M‖H is at least 1-computable with respect to the final sets of queries of A, the
probability that G1

M‖H(M‖H) = 0 is 1/2n. Summing up this reasoning with formulas
yields∑

M‖H

Pr[M‖H ∈ Pot1] ≤
∑

M‖H

Pr[G1
M‖H(M‖H) = 0|M‖H is 1-computable]·

Pr[M‖H is 1-computable]

≤ 1
2n

∑
M‖H

Pr[M‖H is 1-computable]

≤ 1
2n

E (#{M‖H |M‖H is 1-computable})

≤ β1(q)
2n

.

The theorem follows immediately. ut
Remark 1. The reasoning used in [20] concludes that preimage resistance is O(βc(q)/2cn),
which cannot be in view of the generic attack presented hereafter. We reproduce this faulty
reasoning and point out the mistake in Appendix C.

Theorem 2 (Preimage attack matching the security bound). Let h be a (c, t, k,m)-
compression function construction of type I with parameter β′1(q) defined by definition 6.
Then β′1(q) = Ω(2cn) and q = Ω(2(c−1)n) implies that Advpre

h (q) = Ω(1).

Proof. Once again we suppose wlog that the random input H ′ to the adversary is 0.
Consider the following adversary: A first identifies x ∈ {0, 1}c \ {0} such that β′1(q) is
reached and makes the q queries to the inner compression functions f (i) involved in the
calculation of Gx (i.e. such that i ∈ Sx), thus obtaining β′1(q) images by Gx. Let NGx

be the random variable counting among these β′1(q) Gx-computable inputs the number
of them such that Gx(M‖H) = 0. The compression function construction considered
being of type I, the β′1(q) images by Gx obtained are random and pairwise independent.
As β′1(q) = Ω(2cn), with overwhelming probability NGx

= Ω(2(c−1)n). After this first
step, A selects min(NGx

, q) M‖H such that Gx(M‖H) = 0. If NGx
> q, it selects them

randomly. A then queries the remaining compression functions in order to obtain the full
image of the selected external inputs. Restricting the number of selected external inputs
to q ensures that A is always able to obtain their image by h. The probability for one of
these external inputs to be a good preimage is 1/2(c−1)n. As q = Ω(2(c−1)n) by hypothesis,
the adversary finds a preimage of 0 with non-negligible probability. Hence the result. ut

Conclusion for Preimage Resistance. The results of this section show that preimage
resistance of a (c, t, k,m)-compression function construction of type I is governed by the
parameter β1(q). Combining Theorems 1 and 2, and recalling inequality (2) proves that,
at least for constructions such that one may have β′1(q) = Ω(2cn) and q = Ω(2(c−1)n) at
the same time, preimage resistance is Θ(β1(q)/2cn).

4 Security Analysis for Collision Resistance

Theorem 3 (Security bound for collision resistance). Let h be a (c, t, k,m) com-
pression function construction (non necessarily of type I) with parameter β1(q) defined by
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definition 6. Then

Advcoll
h (q) ≤ 1

2n
+
β1(q)2

2 · 2cn .

The proof of this theorem is very similar to the proof of Theorem 1 and is given in
Appendix B. We now exhibit two collision attacks matching sometimes the security bound.

First Collision Attack. The first attack presented here is very simple and meets the
security bound in some cases. It simply consists in computing the image by h of βc(q)
external inputs. For a type I construction, they are random and independent, and a
classical calculus tells us that the probability to obtain a collision is 1−∏βc(q)−1

i=1 (1−i/2cn).
As a consequence we have the following result:

Theorem 4 (First collision attack.). Let h be a (c, t, k,m)-compression function con-
struction of type I with parameter βc(q) defined by definition 6. Then Advcoll

h (q) ≥
0.6βc(q)(βc(q)−1)

2·2cn .
In consequence, for constructions such that βc(q) ∼ β1(q) when q → ∞, the security
bound given in Theorem 3 is tight.

Proof. We have the following inequalities:

Advcoll
h (q) ≥ 1−

βc(q)−1∏
i=1

(1− i

2cn
)

≥ 1− exp

− βc(q)−1∑
i=1

i

2cn


= 1− exp

(
−βc(q)(βc(q)− 1)

2 · 2cn
)

≥
(

1− 1
e

)
βc(q)(βc(q)− 1)

2 · 2cn .

The inequality (1− e−1) > 0.6 completes the proof. ut

Second Collision Attack. The second attack is more similar to the preimage attack
presented previously and may achieve or not a better advantage than the first one de-
pending on the input and output mappings. The adversary proceeds as follows. A first
identifies x ∈ {0, 1}c \{0} such that β′1(q) is reached and makes the q queries to the inner
compression functions involved in the calculation of Gx, thus obtaining β′1(q) images by
Gx. A quotients the set of the external inputs which are Gx-computable at this stage by
the equivalence relation Gx(M1‖H1) = Gx(M2‖H2) and orders the quotient classes by
decreasing cardinal. It then calculates the full image by h of the elements of the quotient
classes, looking for a collision on the (c− 1) remaining output blocks, and beginning with
the quotient class of larger cardinal in order to maximize its probability of success. A
is able to calculate at least q images. Analysing this adversary enables to enunciate the
following result.

Theorem 5 (Second collision attack). Let h be a (c, t, k,m)-compression function
construction of type I with parameter β′1(q) defined by definition 6. Then qβ′1(q) = Ω(2cn)
and β′1(q) = Ω(n2n) implies Advcoll

h (q) = Ω(1).
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Proof. Let us analyse the probability of success of the adversary we just described. The
fact that β′1(q) = Ω(n2n) implies that with probability 1 − O(1), A obtains 2n quotient
classes containing Θ(β′1(q)/2

n) elements each (this is a classical “balls and bins” result,
see for example [19]). Though A will not always be able to obtain the image by h of all
the β′1(q) inputs, we can ensure that it will be able to do so for at least q inputs. So the
number C of quotient classes in which it will be able to look for a full collision under h
is such that C · β

′
1(q)
2n = q, i.e. C = q2n

β′
1(q)

. The events “finding a collision in quotient class
i”, i ∈ [1..C] are independent and their probability pi verify (the proof is analog to the
proof of Theorem 4)

pi ≥ 0.6
#Ci(#Ci − 1)

2(c−1)n

where #Ci is the cardinal of the quotient class being explored for a full collision. As
#Ci = Θ(β′1(q)/2

n)) with overwhelming probability, we have that the total probability to
find a collision is

Ω

C ·
(
β′
1(q)
2n

)2

2(c−1)n

 = Ω

(
qβ′1(q)

2cn

)
.

Consequently qβ′1(q) = Ω(2cn) implies that the probability of success of the adversary is
Ω(1). This concludes the proof. ut

Conclusion for Collision Resistance. The security analysis of (c, t, k,m)-compression
functions for collision resistance is not as tight as for preimage resistance. We proved in
this section that collision resistance is O(β1(q)2/2cn), while the attacks we described show
that a lower bound for collision resistance is Ω(max(βc(q)2, qβ1(q))/2cn).

5 Application to Previously Proposed Schemes

Hirose Schemes. We call Hirose schemes the (c, t, k,m)-compression function construc-
tions where k = m+ c. In this case, using only t = c inner compression functions, setting
M‖H · Ai = M‖H for all i ∈ [0, t] and taking for B the c × c identity matrix yields
a compression function such that β1(q) = βc(q) = q, so that its preimage resistance is
Θ( q

2cn ) and its collision resistance is Θ( q
2

2cn ), which is optimal. This is not a surprising
result since it is easy to see that in the random oracle model, the compression function
obtained is itself a random function from F((m + c)n, cn). These type of schemes have
been studied by Hirose in [6,7], where it is shown how to construct such an optimally
resistant compression function with one ideal block cipher when c = 2.

Nandi et al. Schemes. Nandi et al. proposed two schemes in [20] which are depicted
in Fig. 2. For these schemes, it was shown in [20] that β2(q) ≤ q3/2 and it is not diffi-
cult to convince oneself that β′1(q) ≤ q2. Conversely, β2(q) ≥ bq1/2c3 and, for q ≤ 2n,
β1(q) ≥ q2. Consequently their preimage resistance is Θ(q2/22n), and an attack requiring
Θ(2n) operations was described in [11]. For the collision resistance, our security proof
shows that it is O(q4/22n) while the two collision attacks we described achieve advantage
Ω(q3/22n). The authors of [20] claimed to have proved that collision resistance for their
schemes is O(q3/22n), however we explain in Appendix C why their reasoning is incorrect.
Nevertheless, we conjecture that our security proof can be enhanced to prove that colli-
sion resistance is indeed O(q3/22n). But this must not discourage to look in the direction
of finding better collision attacks than the one described in [11], which needs Θ(22n/3)
oracle queries.
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f (1) f (2) f (3)

H ′
1 H ′

2

H1 M1 H1 H2 H2 M1

(M1, H1, H2)

f (1) f (2) f (3)

H ′
1 H ′

2

H1 H2 M1 H1 M1 M2 H1 H2 M2

(M1, M2, H1, H2)

N1 N2

Fig. 2. Nandi et al. schemes [20].

Peyrin et al. Schemes. Peyrin et al. proposed two schemes in [21] which verified the
necessary conditions they established for a scheme to be secure. They are depicted in Fig.
3. For the first scheme, one can prove with techniques similar to the ones used for Nandi
et al. schemes that β1(q) = Θ(q3/2) and β2(q) = Θ(q3/2), so that the security analysis
is tight in the collision case (collision resistance is Θ(q3/22n) as well as in the preimage
case (preimage resistance is Θ(q3/2/22n)). For the second scheme, β1(q) = Θ(q3/2) and
β2(q) = Θ(q4/3). Here preimage resistance is Θ(q3/2/22n), and collision resistance is
O(q3/22n), while the first collision attack achieves advantage Ω(q8/3/22n). Here again it
is an open question to close the gap between the security proof and the attack.

Related Algorithmic Problems. We want to emphasize that one must make a clear
distinction between security analysis in terms of number of oracle queries and number
of operations. While the number of queries is an obvious lower bound for the number
of operations, it is not always clear how an attacker will be able to reach this lower
complexity bound. For example for the scheme N1 of Fig. 2, the preimage resistance
is Θ(q2/22n) so that an adversary must make Θ(2n) oracle queries to find a preimage
with non negligible probability. The authors of [11] presented an attack also requiring
Θ(2n) operations. Fundamentally, this is achievable thanks to an efficient algorithm for
solving the so-called 2-sum problem which consists in finding, in two lists L1 and L2, two
elements x1 ∈ L1 and x2 ∈ L2 such that x1 ⊕ x2 = 0. The generalization to k lists was
thoroughly studied by Wagner [26]. In the same way as the (in)security of the schemes of
Nandi et al. is linked to efficient ways of solving the 2-sum problem [26], we conjecture
that the security in terms of operations of the schemes of Peyrin et al. is related to the
3-sum problem, for which no good algorithm is known. Giving a reductionist security
proof linking the security of these schemes to a 3-sum hard problem would be an elegant
result.

6 Concluding Remarks

In this paper we conducted the security analysis in terms of oracle queries of very gen-
eral constructions combining compression functions modeled as independent FIL random
oracles to obtain a compression function with longer output. Using the concept of com-
putable input, we gave a security bound for preimage resistance and collision resistance
which is tight for some constructions.
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f (1) f (2) f (3) f (4) f (5)

H ′
1 H ′

2

H1 H2 H2 M1 M1 H1 ⊕H2 H1 M1 H1 H2

f (1) f (2) f (3) f (4) f (5)

H ′
1 H ′

2

H1 H2 M1 H1 H2 M2 H1 M1 M2 H1 H2 M1 H2 M1 M2

Fig. 3. Peyrin et al. schemes [21].

Future work includes carrying the security analysis in the ideal block cipher model as
it was done for Hirose schemes [6,7], a more systematic study of the parameters βi(q),
and closing in the general case the security gap, especially for collision resistance.

Acknowledgements

The authors are grateful to Henri Gilbert for his helpful comments.

References

1. Mihir Bellare and Thomas Ristenpart, Multi-property-preserving hash domain extension and
the EMD transform, Advances in Cryptology – ASIACRYPT ’06 (Xuejia Lai and Kefei Chen,
eds.), Lecture Notes in Computer Science, vol. 4284, Springer-Verlag, 2006, pp. 299–314.

2. John R. Black, Phillip Rogaway, and Thomas Shrimpton, Black-box analysis of the
block-cipher-based hash-function constructions from PGV, Advances in Cryptology –
CRYPTO 2002 (Moti Yung, ed.), Lecture Notes in Computer Science, vol. 2442, Springer-
Verlag, 2002, pp. 320–335.

3. D. Coppersmith, S. Pilpel, C.H. Meyer, S.M. Matyas, M.M. Hyden, J. Oseas, B. Brachtl,
and M. Schilling, Data authentication using modification dectection codes based on a public
one way encryption function, U.S. Patent No. 4,908,861, March 13, 1990.

4. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya, Merkle-
Damgård revisited: How to construct a hash function, Advances in Cryptology –
CRYPTO 2005 (Victor Shoup, ed.), Lecture Notes in Computer Science, vol. 3621, Springer-
Verlag, 2005, pp. 430–448.

Appeared in A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 119–136, 2007.
c© International Association for Cryptologic Research 2007



5. Ivan Damgård, A design principle for hash functions, Advances in Cryptology – CRYPTO ’89
(Gilles Brassard, ed.), Lecture Notes in Computer Science, vol. 435, Springer-Verlag, 1989,
pp. 416–427.

6. Shoichi Hirose, Provably secure double-block-length hash functions in a black-box model, In-
formation Security and Cryptology – ICISC 2004 (C. Park and S. Chee, eds.), Lecture Notes
in Computer Science, vol. 3506, Springer-Verlag, 2004, pp. 330–342.

7. , Some plausible constructions of double-block-length hash functions, Fast Software
Encryption – FSE 2006 (M.J.B. Robshaw, ed.), Lecture Notes in Computer Science, vol.
4047, Springer-Verlag, 2006.

8. Antoine Joux, Multicollisions in iterated hash functions. application to cascaded construc-
tions, Advances in Cryptology – CRYPTO 2004 (Matthew K. Franklin, ed.), Lecture Notes
in Computer Science, vol. 3152, Springer-Verlag, 2004, pp. 306–316.

9. John Kelsey and Bruce Schneier, Second preimages on n-bit hash functions for much less
than 2n work, Advances in Cryptology – EUROCRYPT 2005 (Ronald Cramer, ed.), Lecture
Notes in Computer Science, vol. 3494, Springer-Verlag, 2005, pp. 474–490.

10. Lars R. Knudsen and Xuejia Lai, New attacks on all double block length hash functions of hash
rate 1, including the parallel-DM, Advances in Cryptology – EUROCRYPT ’94 (Alfredo De
Santis, ed.), Lecture Notes in Computer Science, vol. 950, Springer-Verlag, 1994, pp. 410–418.

11. Lars R. Knudsen and Frederic Muller, Some attacks against a double length hash proposal,
Advances in Cryptology – ASIACRYPT ’05 (B. Roy, ed.), Lecture Notes in Computer Sci-
ence, vol. 3788, Springer-Verlag, 2005, pp. 462–473.

12. Lars R. Knudsen and Bart Preneel, Hash functions based on block ciphers and quaternary
codes, Advances in Cryptology – ASIACRYPT ’96 (Kwangjo Kim and Tsutomu Matsumoto,
eds.), Lecture Notes in Computer Science, vol. 1163, Springer-Verlag, 1996, pp. 77–90.

13. , Fast and secure hashing based on codes, Advances in Cryptology – CRYPTO ’97
(Burton S. Jr. Kaliski, ed.), Lecture Notes in Computer Science, vol. 1294, Springer-Verlag,
1997, pp. 485–498.

14. , Construction of secure and fast hash functions using nonbinary error-correcting
codes, IEEE Transactions on Information Theory 48 (2002), no. 9, 2524–2539.

15. Xuejia Lai and James L. Massey, Hash function based on block ciphers, Advances in Cryp-
tology – EUROCRYPT ’92 (Rainer A. Rueppel, ed.), Lecture Notes in Computer Science,
vol. 658, Springer-Verlag, 1992, pp. 55–70.

16. Xuejia Lai, Christian Waldvogel, Walter Hohl, and Thomas Meier, Security of iterated hash
functions based on block ciphers, Advances in Cryptology – CRYPTO ’93 (Douglas Robert
Stinson, ed.), Lecture Notes in Computer Science, vol. 773, Springer-Verlag, 1993, pp. 379–
390.

17. Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1996.

18. Ralph C. Merkle, One way hash functions and DES, Advances in Cryptology – CRYPTO ’89
(Gilles Brassard, ed.), Lecture Notes in Computer Science, vol. 435, Springer-Verlag, 1989,
pp. 428–446.

19. Rajeev Motwani and Prabhakar Raghavan, Randomized algorithms, Cambridge University
Press, 1995.

20. Mridul Nandi, Wonil Lee, Kouichi Sakurai, and Sangjin Lee, Security analysis of a 2/3-rate
double length compression function in black-box model, Fast Software Encryption – FSE 2005
(Henri Gilbert and Helena Handschuh, eds.), Lecture Notes in Computer Science, vol. 3557,
Springer-Verlag, 2005, pp. 243–254.

21. Thomas Peyrin, Henri Gilbert, Frédéric Muller, and Matthew J. B. Robshaw, Combining
compression functions and block cipher-based hash functions, Advances in Cryptology – ASI-
ACRYPT ’06 (Xuejia Lai and Kefei Chen, eds.), Lecture Notes in Computer Science, vol.
4284, Springer-Verlag, 2006, pp. 315–331.

22. Bart Preneel, Antoon Bosselaers, René Govaerts, and Joos Vandewalle, Collision-free hash
functions based on block cipher algorithms, Proceedings 1989 International Carnahan Confer-
ence on Security Technology, IEEE, 1989, IEEE catalog number 89CH2774-8, pp. 203–210.

23. Bart Preneel, René Govaerts, and Joos Vandewalle, Hash functions based on block ciphers: A
synthetic approach, Advances in Cryptology – CRYPTO ’93 (Douglas Robert Stinson, ed.),
Lecture Notes in Computer Science, vol. 773, Springer-Verlag, 1993, pp. 368–378.

Appeared in A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 119–136, 2007.
c© International Association for Cryptologic Research 2007



24. Jean-Jacques Quisquater and Marc Girault, 2n-bit hash-functions using n-bit symmetric block
cipher algorithms, Advances in Cryptology – EUROCRYPT ’89 (Jean-Jacques Quisquater
and Joos Vandewalle, eds.), Lecture Notes in Computer Science, vol. 434, Springer-Verlag,
1989, pp. 102–109.

25. Claude Shannon, Communication theory of secrecy systems, Bell System Technical Journal
28 (1949), no. 4, 656–715.

26. David Wagner, A generalized birthday problem, Advances in Cryptology – CRYPTO 2002
(Moti Yung, ed.), Lecture Notes in Computer Science, vol. 2442, Springer-Verlag, 2002,
pp. 288–303.

27. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Finding collisions in the full SHA-1, Ad-
vances in Cryptology – CRYPTO 2005 (Victor Shoup, ed.), Lecture Notes in Computer
Science, vol. 3621, Springer-Verlag, 2005, pp. 17–36.

28. Xiaoyun Wang and Hongbo Yu, How to break MD5 and other hash functions, Advances in
Cryptology – EUROCRYPT 2005 (Ronald Cramer, ed.), Lecture Notes in Computer Science,
vol. 3494, Springer-Verlag, 2005, pp. 19–35.

29. Robert S. Winternitz, A secure one-way hash function built from DES, IEEE Symposium on
Security and Privacy, 1984, pp. 88–90.

A Proof of Lemmata

Proof of Lemma 1. Consider x ∈ {0, 1}c \ {0} and two distinct inputs M1‖H1 and
M2‖H2. By definition of Sx, we have that

Gx(M‖H) =
⊕
j∈Sx

f (j)(M‖H · Aj).

The fact that Gx(M1‖H1) and Gx(M2‖H2) are uniformly random is obvious because
they are linear combination of the uniformly random outputs of the f (j)’s. Moreover the
internal input blocks of the f (j)’s differ in at least one bit for M1‖H1 and M2‖H2,
otherwise, as M1‖H1 6= M2‖H2 it would be possible to construct a non zero element
in
⋂
j∈Sx

kerAj , which is {0} by hypothesis. As the output of the f (j)’s are random and
independent, Gx(M1‖H1) and Gx(M2‖H2) are also independent.

Proof of Lemma 3. As x ∈ {0, 1}c \ Vec(x1, . . . , xr), and as B has full rank, then nec-
essarily x · BT is not a linear combination of the (xi · BT )i∈[1..r]. Consequently, there
exists j ∈ [1..t] such that f (j) intervenes in Gx but in none of the (Gxi

)i∈[1..r]. As the
outputs of the inner compression functions are independent, Gx(M‖H) is independent
from (Gxi(M‖H))i∈[1..r]. The generalization follows easily by induction.

B Proof of Theorem 3

Let A be a collision-finding adversary attacking the compression function h. Instead of
working on single external inputs as for the proof of Theorem 1, we will work on pairs of
distinct external inputs, but the reasoning will be quite similar and readers are recom-
mended to read the preimage proof before this one. Let P2 be the set of all 2-elements
subsets of {0, 1}m+c. External inputs will be noted X instead of M‖H for concision.
Let define Coll as being the set of pairs of distinct external inputs {X1,X2} which are
h-computable with respect to the final set of queries of A and which collide under h. As
for preimage, it is easy to see that Pr[A wins] ≤ 1/2n + Pr[Coll 6= ∅].
We now bound Pr[Coll 6= ∅]. Given partial sets of queries Q′1, . . . ,Q′t ⊂ (In)k, we will say
that the pair {X1,X2} ∈ P2 is compatible if X1 and X2 collide on V{X1,X2} = VX1∩VX2 ,
meaning that for all x ∈ V{X1,X2}, Gx(X1) = Gx(X2). Here also it is possible to show
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that if V{X1,X2} 6= {0} with respect to the final sets of queries of A, then there is an
unique x ∈ {0, 1}c \ {0} such that V{X1,X2} = Vec(x) when it becomes strictly big-
ger than {0}. We will note G1

{X1,X2} the linear combination of output blocks associ-
ated with this x. We define Pot1 as being the set of all {X1,X2} ∈ P2 such that X1

and X2 are at least 1-compatible with respect to the final sets of queries of A and
G1
{X1,X2}(X1) = G1

{X1,X2}(X2). It is now straightforward to follow the same reasoning
as for the preimage proof, which we do without further justification:

Pr[Coll 6= ∅] ≤
∑

{X1,X2}

Pr[{X1,X2} ∈ Coll]

≤
∑

{X1,X2}

Pr[{X1,X2} ∈ Coll|{X1,X2} ∈ Pot1]·

Pr[{X1,X2} ∈ Pot1]

≤ 1
2(c−1)n

∑
{X1,X2}

Pr[{X1,X2} ∈ Poti]

≤ 1
2(c−1)n

∑
{X1,X2}

Pr[G1
{X1,X2}(X1) = G1

{X1,X2}(X2)|X1 and X2 are

1−computable] · Pr[X1 and X2 are 1−computable]

≤ 1
2(c−1)n

1
2n

∑
{X1,X2}

Pr[X1 and X2 are 1−computable]

≤ β1(q)2

2 · 2cn .

Hence the result.

C Why the Reasoning of [20] was Faulty

We’d like to emphasize why the following reasoning, which was the one used in [20] for
their security proof for preimage attacks, is tempting but fallacious.
One can surely write (see the proof of Theorem 1 for the notations)

Pr[Preim 6= ∅] ≤
∑

M‖H

Pr[M‖H ∈ Preim]

≤
∑

M‖H

Pr[M‖H is h-computable ∧ h(f(1),...,f(t))(M‖H) = 0].

At this stage, it is tempting to claim that the events “M‖H is h-computable” and
“h(f(1),...,f(t))(M‖H) = 0” are independent, thus concluding that

Pr[Preim 6= ∅] ≤ 1
2cn

∑
M‖H

Pr[M‖H is h-computable]

≤ 1
2cn

E(#{M‖H | M‖H is h-computable})

≤ βc(q)
2cn

.

However, this is false because these two events are not independent. Indeed, one can
intuitively argue that the fact that h(f(1),...,f(t))(M‖H) = 0, being detected on one of the
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output blocks by the adversary, will increase the probability that A makes the queries
needed to compute M‖H on other output blocks, thus increasing the probability for
M‖H to be h-computable.
The same type of problem arises for collision resistance, where an analogue but still hasty
reasoning would conclude that Pr[Coll 6= ∅] ≤ βc(q)

2

2·2cn .
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