Habilitation à Diriger des Recherches de l'Université de Caen Basse-Normandie

la cryptographie au service de la protection de la vie privée

Sébastien Canard Orange Labs 2 décembre 2009

quelques mots pour commencer

- ingénieur de recherche depuis 2003
- employé par le Groupe France Télécom
- domaine de recherche : cryptographie
- domaine application : protection de la vie privée dans les services
- montage, gestion et participation à des projets collaboratifs (PACE, SAVE, CRYPTO++, SPICE)
- encadrement de 3 thésards

quelques mots pour commencer

- ingénieur de recherche depuis 2003
- employé par le Groupe France Télécom
- domaine de recherche: cryptographie
- domaine application : protection de la vie privée dans les services
- montage, gestion et participation à des projets collaboratifs (PACE, SAVE, CRYPTO++, SPICE)
- encadrement de 3 thésards
- mais parlons plutôt d'Alice...

présentation d'Alice

ALIC

- aujourd'hui, Alice est une étudiante
- elle a 21 ans
- elle a un frère de 16 ans
- elle possède un téléphone mobile
- elle aime bien les voyages et les vêtements
- elle possède un ordinateur avec une connection à Internet

- Alice utilise son téléphone mobile pour se connecter à un site web où elle peut poser des questions médicales
 - elle veut se renseigner sur une maladie particulière
 - comme elle est à l'Université, elle va utiliser son téléphone mobile
 - elle souhaite être anonyme pour ne pas révéler qu'elle s'intéresse à cette maladie
 - mais le site ne propose pas cette option sur mobile...

- Alice utilise son téléphone mobile pour se connecter à un site web où elle peut poser des questions médicales
 - elle veut se renseigner sur une maladie particulière
 - comme elle est à l'Université, elle va utiliser son téléphone mobile
 - elle souhaite être anonyme pour ne pas révéler qu'elle s'intéresse à cette maladie
 - mais le site ne propose pas cette option sur mobile...
- en rentrant à la maison, elle prépare la fête qu'elle va organiser avec ses amies
 - Alice va leur montrer les photos de son dernier voyage en Australie
 - elle ne veut pas que ses amies aient accès à d'autres contenus familiaux ou personnels
 - mais elle ne peut pas le gérer avec l'application proposée...

- Alice doit élire son réprésentant au Conseil d'Administration de l'Université
 - la participation étant très faible, il a été décidé cette année de faire du vote électronique
 - mais le système n'est pas suffisamment sécurisé
 - il y a une fraude et le résultat est compromis...

- Alice doit élire son réprésentant au Conseil d'Administration de l'Université
 - la participation étant très faible, il a été décidé cette année de faire du vote électronique
 - mais le système n'est pas suffisamment sécurisé
 - il y a une fraude et le résultat est compromis...
- après les cours, elle va rentrer chez elle pour surfer sur Internet
 - elle va tout d'abord sur le site web de la mairie de sa ville pour retirer un certificat de naissance
 - puis elle se connecte au site web de son opérateur téléphonique pour faire un achat en ligne
 - elle n'utilise qu'une seule fois son login et mot de passe pour se connecter aux deux services...

- après les cours, Alice veut s'acheter un pull dans un nouveau magasin
 - elle doit d'abord retirer des sous auprès de sa banque, via son téléphone mobile
 - dans le magasin, elle utilise son téléphone mobile pour payer son pull
 - ce dernier est équipé d'une étiquette RFID afin d'en assurer la traçabilité et de lutter contre la contrefaçon
 - tout lecteur d'étiquettes RFID est capable de lire l'identifiant unique de l'étiquette du pull acheté...

- après les cours, Alice veut s'acheter un pull dans un nouveau magasin
 - elle doit d'abord retirer des sous auprès de sa banque, via son téléphone mobile
 - dans le magasin, elle utilise son téléphone mobile pour payer son pull
 - ce dernier est équipé d'une étiquette RFID afin d'en assurer la traçabilité et de lutter contre la contrefaçon
 - tout lecteur d'étiquettes RFID est capable de lire l'identifiant unique de l'étiquette du pull acheté...
- elle va ensuite prêter des sous à son petit frère
 - ils utilisent tous les deux leurs téléphones mobiles pour cet échange
 - Alice utilise les pièces retirées initialement à sa banque
 - la banque est capable de tracer les pièces qu'elle a délivrées à Alice...

1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile

- 1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile
- 2. ses amies peuvent trouver des informations sur sa vie privée, alors qu'elle ne le souhaite pas forcément

- 1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile
- 2. ses amies peuvent trouver des informations sur sa vie privée, alors qu'elle ne le souhaite pas forcément
- 3. le résultat du vote auquel elle a participé est erroné

- 1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile
- 2. ses amies peuvent trouver des informations sur sa vie privée, alors qu'elle ne le souhaite pas forcément
- 3. le résultat du vote auquel elle a participé est erroné
- 4. la mairie et son opérateur peuvent croiser leurs bases

- 1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile
- 2. ses amies peuvent trouver des informations sur sa vie privée, alors qu'elle ne le souhaite pas forcément
- 3. le résultat du vote auquel elle a participé est erroné
- 4. la mairie et son opérateur peuvent croiser leurs bases
- 5. à l'aide de l'étiquette RFID de son pull, n'importe qui est capable de tracer ses déplacements

- 1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile
- 2. ses amies peuvent trouver des informations sur sa vie privée, alors qu'elle ne le souhaite pas forcément
- 3. le résultat du vote auquel elle a participé est erroné
- 4. la mairie et son opérateur peuvent croiser leurs bases
- 5. à l'aide de l'étiquette RFID de son pull, n'importe qui est capable de tracer ses déplacements
- 6. la banque et les marchands sont capables de tracer les dépenses/transferts d'Alice

- 1. elle ne peut pas être anonyme quand elle utilise son téléphone mobile
- 2. ses amies peuvent trouver des informations sur sa vie privée, alors qu'elle ne le souhaite pas forcément
- 3. le résultat du vote auquel elle a participé est erroné
- 4. la mairie et son opérateur peuvent croiser leurs bases
- 5. à l'aide de l'étiquette RFID de son pull, n'importe qui est capable de tracer ses déplacements
- 6. la banque et les marchands sont capables de tracer les dépenses/transferts d'Alice

⇒ qu'est ce qu'Alice aurait dû utiliser?

comment Alice peut-elle être anonyme avec son téléphone mobile?

authentifications anonymes

- signatures aveugles
 - un utilisateur obtient une signature d'un signataire
 - le signataire ne connaît pas le message
 - il sera incapable de reconnaître a posteriori sa signature
- signatures de groupe
 - capacité de signer des messages au nom du groupe
 - signatures anonymes et intraçables
 - une autorité est capable de lever l'anonymat d'une signature
- signatures d'anneau
 - même principe que les signatures de groupe
 - pas de levé d'anonymat
 - pas d'autorité pour introduire les membres dans le groupe

problématique de l'efficacité

- ces signatures nécessitent de nombreux calculs
 - 11 exponentiations pour un exemple de signature de groupe
 - 43 pour un exemple de signature d'anneau avec 10 membres
- l'implémentation dans un dispositif limité est compromise
- deux solutions
 - faire des hypothèses supplémentaires (ex. inviolabilité du dispositif)

```
[S.C., M. Girault, CARDIS 2002]
[S.C., J. Traoré, CARDIS 2004]
```

- se faire assister par une entité plus puissante...

cryptographie anonyme assistée

[S.C., I. Coisel, en soumission]

- introduction d'un intermédiaire
 - grande puissance de calcul
 - se place entre le prouveur et le vérifieur (cas pratique)
 - délégation d'une partie des calculs du prouveur...
 - ... sans compromettre la sécurité
 - il possède éventuellement des connaissances supplémentaires propres au prouveur
- propriétés usuelles des schémas étudiés
 - consistance
 - validité
 - intraçabilité

sécurité vs. efficacité

PROBE CAS ONE PROPERTY OF THE PROPERTY OF THE

- consistance assistée
 - confiance dans l'intermédiaire
- validité assistée
 - l'adversaire peut corrompre l'intermédiaire
 - il possède donc éventuellement des connaissances supplémentaires
- intraçabilité assistée
 - cas faible
 - l'intermédiaire est de confiance
 - équivalent à la propriété dans le cas non assistée
 - cas fort
 - l'adversaire n'est pas capable de reconnaître le prouveur, même en jouant le rôle de l'intermédiaire
- meilleur gain calculatoire

cas du schéma XSGS

- chaque membre possède (A,u,x) tel que $A^{u+\gamma}=g_1h^x$
- signature non assistée

-
$$T_1=k^{\alpha}$$
, $T_2=Ah^{\alpha}$, $T_3=k^{\beta}$, $T_4=Ag^{\beta}$, $z=u\alpha+x$

- Pok
$$(z,\alpha,\beta,u:T_1=k^{\alpha}\wedge T_3=k^{\beta}\wedge T_2/T_4=h^{\alpha}/g^{\beta}\wedge e(T_2,g_2)^ue_{hw}^{-\alpha}e_{hg}^{-z}=e_{gg}/e(T_2,w))(m)$$

- signature assistée avec intraçabilité faible
 - l'intermédiaire peut avoir accès à (A,u)
 - $T_1 = k^{\alpha}$, $T_2 = Ah^{\alpha}$, $T_1 = k^{\beta}$, $T_4 = Ag^{\beta}$, $z = u\alpha + x$
 - SAPOK $(z,\alpha,\beta,u:T_1=k^{\alpha}\wedge T_3=k^{\beta}\wedge T_2/T_4=h^{\alpha}/g^{\beta}\wedge e(T_2,g_2)^ue_{hw}^{-\alpha}e_{hg}^{-z}=e_{gg}/e(T_2,w))(m)$

cas du schéma XSGS

- chaque membre possède (A,u,x) tel que $A^{u+\gamma}=g_1h^x$
- signature non assistée

-
$$T_1 = k^{\alpha}$$
, $T_2 = Ah^{\alpha}$, $T_3 = k^{\beta}$, $T_4 = Ag^{\beta}$, $z = u\alpha + x$

- Pok
$$(z,\alpha,\beta,u:T_1=k^{\alpha}\wedge T_3=k^{\beta}\wedge T_2/T_4=h^{\alpha}/g^{\beta}\wedge e(T_2,g_2)^ue_{hw}^{-\alpha}e_{hg}^{-z}=e_{gg}/e(T_2,w))(m)$$

- signature assistée avec intraçabilité faible
 - l'intermédiaire peut avoir accès à (A,u)

-
$$T_1=k^{\alpha}$$
, $T_2=Ah^{\alpha}$, $T_1=k^{\beta}$, $T_4=Ag^{\beta}$, $z=u\alpha+x$

- SAPOK
$$(z,\alpha,\beta,u: T_1 = k^{\alpha} \wedge T_3 = k^{\beta} \wedge T_2/T_4 = h^{\alpha}/g^{\beta} \wedge e(T_2,g_2)^u e_{hw}^{-\alpha} e_{hg}^{-z} = e_{gg}/e(T_2,w))(m)$$

• sécurité de la preuve de connaissance assistée

[S.C., I. Coisel, J. Traoré, ProvSec 2007]

cas du schéma XSGS

- chaque membre possède (A,u,x) tel que $A^{u+\gamma}=g_1h^x$
- signature non assistée

-
$$T_1 = k^{\alpha}$$
, $T_2 = Ah^{\alpha}$, $T_3 = k^{\beta}$, $T_4 = Ag^{\beta}$, $z = u\alpha + x$

- Pok
$$(z,\alpha,\beta,u:T_1 = k^{\alpha} \wedge T_3 = k^{\beta} \wedge T_2/T_4 = h^{\alpha}/g^{\beta} \wedge e(T_2,g_2)^u e_{hw}^{-\alpha} e_{hg}^{-z} = e_{gg}/e(T_2,w))(m)$$

- signature assistée avec intraçabilité forte
 - l'intermédiaire ne doit pas avoir accès à (A,u)

-
$$T_1 = k^{\alpha}$$
, $T_2 = Ah^{\alpha}$, $T_1 = k^{\beta}$, $T_4 = Ag^{\beta}$, $z = u\alpha + x$

- SAPOK
$$(z,\alpha,\beta,u:T_1=k^{\alpha}\wedge T_3=k^{\beta}\wedge T_2/T_4=h^{\alpha}/g^{\beta}\wedge e(T_2,g_2)^ue_{hw}^{-\alpha}e_{hg}^{-z}=e_{gg}/e(T_2,w))(m)$$

• sécurité de la preuve de connaissance assistée

[S.C., I. Coisel, J. Traoré, ProvSec 2007]

bilan

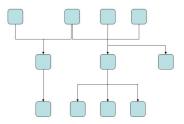
Schéma	Version	Complexité
signature de groupe XSGS	standard	11 exponentiations et 1 couplage
	faible	1 exponentiation
	forte	11 exponentiations
signature d'anneau CGS	standard	$ u^2 + 9\nu + 6$ exponentiations
	faible	9 u exponentiations
	forte	$ u^2 + 9\nu + 6 $ exponentiations
signature aveugle HT	standard	55 exponentiations et 3 couplages
	faible	2 exponentiations
	forte	10 exponentiations et 2 couplages

- son téléphone mobile est puissant mais peu sécurisé
- sa carte SIM est peu puissante mais très sécurisée
- Alice fait confiance à son mobile du point de vue l'anonymat

⇒ Alice peut maintenant se servir de son mobile pour être anonyme

comment Alice peut-elle protéger et diffuser ses contenus numériques?

la protection des contenus



- protection des contenus dans un contexte de groupe
 - ici, la famille
 - chaque contenu va être chiffré avec une clé particulière
- membres (au sens large) d'une famille
 - les parents, les enfants, les amis
 - les personnes appartiennent à plusieurs catégories
 - famille (au sens strict) qui n'inclut pas les amis
 - adulte, ce qui inclut les amis, mais pas les enfants (contrôle parental)
- chacun possède des droits différents sur les contenus
 - chacun va posséder une clé de déchiffrement qui lui est propre
 - elle doit lui permettre de déchiffrer les contenus liés aux catégories auxquelles il appartient

⇒ représentation par un graphe

problématique de gestion des clés

- chaque membre appartient à un nœud du graphe
- chaque nœud est lié à une clé de déchiffrement
- un nœud doit avoir accès à toutes les clés des nœuds en dessous
- un nœud ne doit pas avoir accès aux clés des nœuds au dessus
- graphe orienté acyclique avec plusieurs racines
- exemple:

⇒ comment gérer les clés dans ce graphe?

[S.C., A. Jambert, Indocrypt 2008]

[S.C., A. Jambert, Indocrypt 2008]

- cas un père

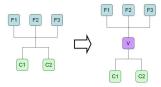
$$k_{fils} = \text{HMAC}(k_{pere} || C || c_{pere})$$

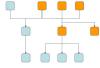
[S.C., A. Jambert, Indocrypt 2008]

cas un père

$$k_{fils} = \text{HMAC}(k_{pere} || C || c_{pere})$$

- cas plusieurs pères et un fils
 - utilisation d'un système de gestion de clés dans un groupe non hiérarchique
 - généralisation du Diffie-Hellman à plusieurs acteurs

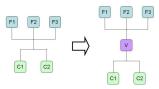



[S.C., A. Jambert, Indocrypt 2008]

cas un père

$$k_{fils} = \text{HMAC}(k_{pere} || C || c_{pere})$$

- cas plusieurs pères et un fils
 - utilisation d'un système de gestion de clés dans un groupe non hiérarchique
 - généralisation du Diffie-Hellman à plusieurs acteurs
- cas plusieurs pères et plusieurs fils



[S.C., A. Jambert, Indocrypt 2008]

cas un père

$$k_{fils} = \text{HMAC}(k_{pere} || C || c_{pere})$$

- cas plusieurs pères et un fils
 - utilisation d'un système de gestion de clés dans un groupe non hiérarchique
 - généralisation du Diffie-Hellman à plusieurs acteurs
- cas plusieurs pères et plusieurs fils

⇒ Alice peut maintenant protéger ses contenus en toute souplesse

quel système de vote électronique aurait dû utiliser l'Université?

le vote électronique

Moj Cutte Anavie.

Thi Danne Rockation

A UV Orbitator

A UV O

- propriétés de sécurité
 - vérification universelle du vote
 - secret du vote
 - démocratie
 - pas de résultat partiel
 - sans reçu
- grandes familles de constructions cryptographiques
 - chiffrement homomorphique

[SAVE, non publié]

- réseau de mélangeurs universellement vérifiable
- signatures avec anonymat

focus sur les signatures avec anonymat

- signatures de groupe
 - pas adaptées (intraçabilité, révocation d'anonymat)
 - il faut utiliser les signatures de liste

[S.C., B. Schoenmakers, M. Stam, J. Traoré, Journal DAM]

- utilisation d'une carte à puce, sous l'hypothèse d'inviolabilité

[S.C., H. Sibert, FEE 2006]

- signatures aveugles
 - le votant chiffre son choix
 - le votant obtient une signature aveugle de ce chiffré
 - le votant envoie son bulletin dans l'urne
 - problématique de l'anonymat lors de l'envoi

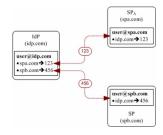
utilisation d'un réseau de mélangeurs (non universellement vérifiable)

vote et signatures aveugles

- système de vote Votopia (utilisé par l'Université d'Alice)
 - ⇒ le premier mélangeur peut tricher
 - $\sin r < N$
 - remplace des bulletins aléatoires par des bulletins non envoyés
 - $\sin n = N$
 - demande à des complices d'envoyer des faux bulletins
 - remplace des bulletins aléatoires par les bulletins de ses complices
- le premier mélangeur doit prouver qu'il a bien fait son travail
 - mais le permier et second mélangeurs peuvent tricher ensemble
 - le second mélangeur doit aussi être universellement vérifiable...
 - \Longrightarrow on a besoin d'un réseau de mélangeur universellement vérifiable
 - ⇒ plus besoin de la signature aveugle
- utilisation d'un schéma de signature aveugle à anonymat révocable
 [S.C., M. Gaud, J. Traoré, Financial Cryptography 2006]

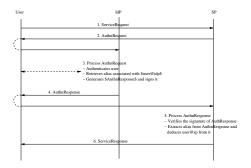
anonymat révocable

[S.C., M. Gaud, J. Traoré, Financial Cryptography 2006]


- obtient le message et la signature à partir du protocole initial
 - tout bulletin non envoyé est mis sur liste de révocation
 - les bulletins rajoutés par le premier mélangeurs seront refusés
- obtient l'identité de l'utilisateur après divulgation du message et de la signature
 - révocation de l'anonymat des faux bulletins après passage par le réseau de mélangeurs
 - si un problème, le réseau de mélangeurs doit prouver sa bonne foi

⇒ Alice peut maintenant voter en toute tranquilité

quelle technologie Alice doit-elle utiliser pour ne pas que la mairie et son opérateur puissent croiser leurs bases de données?


fédération d'identité

- Alice veut accéder à plusieurs services
 - a priori, elle doit s'authentifier à chaque fois
 - mais elle a fédéré ses identités
 - ⇒ une seule authentification nécessaire
- rôle de la mairie (IdP)
 - authentifier Alice
 - certifier à l'opérateur (SP) qu'elle a authentifié Alice
- utilisation d'un alias pour référencer Alice chez le SP
- qu'est ce qu'un alias?
 - valeur pseudo-aléaoire
 - signé par l'IdP
 - généré par le SP ou l'IdP
 - pas de correspondance avec Alice
 - différent d'un SP à un autre

authentification jetable (SSO)

- si les identités sont fédérées, le SSO est possible
- permet à Alice de ne s'authentifier qu'une seule fois
- l'IdP retrouve l'alias correspondant à alice@idp et le SP
- le SP n'a pas besoin d'authentifier Alice
 - il extrait l'alias de la requête
 - et l'utilise pour retrouve l'identité d'Alice

identité et protection de la vie privée

- premier niveau de protection de la vie privée
- problème avec le système actuel
 - IdP et SP peuvent corréler leurs bases
 - IdP a toute l'information pour corréler les identités d'Alice
- est ce un problème?
 - corrélation désirée dans certains cas (Circle Of Trust)
 - exemple de COT: administratif, bancaire, loisir, etc.
 - mais pas entre COT
- introduction de la fédération d'identité "côté client"

[S.C., E. Malville, J. Traoré, ACM DIM]

identité et protection de la vie privée

- la fédération d'identité est identique à celle de l'Alliance Liberty
- l'IdP doit signer l'alias de fédération
 - sans le connaître
 - sans être capable de reconnaître sa signature a posteriori
 - tout en authentifiant l'utilisateur
 - ⇒ nous avons besoin d'une signature aveugle
- structure d'une réponse d'authentification
 - contient l'alias de fédération d'Alice
 - contient des données (identifiant de requête, date, etc.) permettant de tracer la requête
 - contient des données générales telles que les balises SAML ou l'identité du SP
 - toutes ces données sont signées par l'IdP

une nouvelle signature aveugle

- masquer ou ne pas masquer?
 - l'alias doit être masqué
 - les données de "traçage" doivent aussi être masquées
 - les données générales NE doivent PAS être masquées
 - ⇒ nous avons besoin d'une signature partiellement aveugle
- intéressons nous à l'alias
 - il doit être le même à chaque authentification jetable
 - l'IdP doit vérifier que c'est le même
 - nous devons introduire un nouveau type de signature aveugle
 - ⇒ la signature partiellement aveugle invariable

[S.C., E. Malville, J. Traoré, Journal IIS]

⇒ Alice utilise facilement et en toute sécurité la fédération d'identité

d'Alice ne permette pas de tracer ses mouvements?

systèmes RFID

- les étiquettes RFID doivent remplacer les codes à barres
 - identifiant unique EPC
 - embarquer de la sécurité
 - moins l'étiquette est chère, moins elle est puissante
 - nécessité d'adapter les algorithmes cryptographiques
- outils cryptographiques disponibles
 - aucune multiplication modulaire (ex. de GPS)
 - quelques algorithmes à clé secrète (XOR, AES, PRESENT, etc.)
- authentification et identification d'une étiquette RFID
 - une étiquette valide doit toujours être acceptée par le lecteur
 - une étiquette non valide doit être refusée par le lecteur
 - notion de protection de la vie privée...
 - authentification et identification par un lecteur autorisé
 - anonymat et intraçabilité pour les autres

[S.C., I. Coisel, M. Girault, en soumission]

constructions à base de clé secrète

- l'étiquette et le lecteur autorisé partagent une même clé secrète
- anonymat des étiquettes
 - le lecteur autorisé ne sait pas a priori à quelle étiquette il a affaire
 - recherche exhaustive sur l'ensemble des étiquettes valides
- intraçabilité des étiquettes
 - les systèmes actuels nécessitent une mise à jour de la clé partagée
- attaques possibles
 - suffisamment désynchroniser l'étiquette et le lecteur
 - ⇒ une étiquette valide peut être refusée
 - envoyer une valeur aléatoire au lecteur
 - ⇒ le lecteur ne va jamais trouver d'étiquette correspondante
 - ⇒ il faut une modélisation supplémentaire dans ce cas

[S.C., I. Coisel, RFIDSec 2008]

un construction à base de clé publique

[S.C., I. Coisel, M. Girault, en soumission]

$$\begin{array}{ccccc} & & & & & & & & & \\ b \in_R \left\{0,1\right\}^k & & & & & & & & & \\ T_0 = f(\mathsf{sk}[\mathsf{ID}], a \| b) & & & & & & \\ T_1 = \left(T_0 \| \mathsf{k}[\mathsf{ID}] \| b\right) \oplus \mathcal{H}(y^w) & & & & & \\ T_2 = g^w & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

- implémentation pratique
 - utilisation des coupons pour $\mathcal{H}(y^w)$ et T_2
 - utilisation de Present en mode CBC pour la fonction f \Longrightarrow taille \approx 1200 portes équivalentes, exécution \approx 100 ms
- autre possibilité: utiliser un algorithme de chiffrement à clé publique
 [S.C., I. Coisel, J. Etrog, WLC 2010]

⇒ le pull ne révèle plus rien aux lecteurs extérieurs

quel système utiliser pour ne pas que la banque et les marchands tracent les dépenses/transerts de pièces d'Alice?

monnaie électronique

- émulation électronique de la monnaie traditionnelle
 - Alice peut retirer des sous à sa banque (porte-monnaie)
 - Alice peut dépenser des sous auprès des marchands
 - Alice peut transférer des sous dans un autre porte-monnaie
 - anonymat et intraçabilité d'Alice dans ses dépenses/transferts
- qu'est ce qu'on entend par anonymat et intraçabilité?
 - vis-à-vis des marchands
 - vis-à-vis de la banque
 - mais pas en cas de fraude
 - cas de la double-dépense
 - autres cas (monnaie équitable)

concept de pièce électronique

- qu'est ce qu'une pièce de monnaie électronique?
 - un numéro de série
 - une validation (signature) de ce numéro de série par la banque
- qu'est ce que la dépense d'une pièce?
 - preuve qu'on utilise une pièce validée par la banque
 - preuve de connaissance d'une signature de la banque
 - ne pas révéler son identité
 - ⇒ ne révéler ni le numéro de série, ni la signature de la banque
- la monnaie électronique efficace nécessite
 - des procédures rapide
 - la manipulation de données de petite taille

efficacité du retrait

- système compact e-cash
 - basé sur les schémas de signature de groupe
 - retrait efficace de 2^L pièces
 - porte-monnaie compact
- principe
 - utilisation d'un compteur incrémenté $j \in [1,J]$ à chaque dépense
 - nécessité d'une preuve qu'un secret appartient à un intervalle

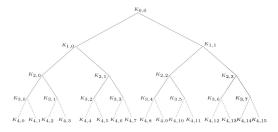
```
[S.C., I. Coisel, A. Jambert, J. Traoré, en soumission] [S.C., C. Dulong, non publié]
```

amélioration possible

[S.C., A. Gouget, E. Hufschmitt, ACNS 2006]

- retrait efficace d'un nombre quelconque J de pièces
- gestion des pièces de valeurs différentes

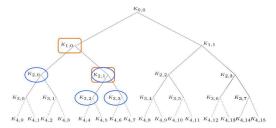
efficacité de la dépense


- basé sur compact e-cash
 - calcul et taille des données toujours proportionnels en le nombre de pièces ℓ dépensées
- nouvelle vision des choses

[PACE, ISC 2009]

- dépense ultra compacte, en $\mathcal{O}(\log \ell)$
- utilisation du batch RSA en version aveugle
- permet de décomposer une signature RSA sur plusieurs messages en une unique signature sur plusieurs sous-messages
- utilisation de la monnaie divisible...

monnaie divisible


- retrait d'une grosse pièce de monnaie
- possibilité de diviser cette pièce en petites pièces, en fonction des dépenses
- problématiques d'anonymat
 - infaisable de savoir si deux dépenses proviennent de la même pièce retirée
 - infaisable de savoir quelle partie de la pièce est dépensée

anonymat fort

[S.C., A. Gouget, Eurocrypt 2007]

- premier système avec toutes les propriétés d'anonymat énoncées
- construction générique pour la dépense d'un nœud
 - numéro de série = clé des deux nœuds fils
 - tag de sécurité = chiffrement de l'identité du dépenseur à l'aide de la clé du nœud dépensé
- première tentative de réalisation pratique par Au-Susilo-Mu
 - très grande efficacité
 - mais seulement non-falsification statistique

anonymat fort et efficacité

[S.C., A. Gouget, Financial Cryptography 2010]

- utilisation d'un accumulateur
 - accumulation des nœuds d'un même niveau
 - accumulation de tous les nœuds ensemble (sauf la racine)
- retrait
 - signature de tous les accumulateurs par la banque
 - rajout d'un secret de liaison et de la clé secrète utilisateur
- efficacité de la dépense
 - prouver que le nœud dépensé est bien dans deux accumulateurs
 - prouver que les deux accumulateurs sont bien signés
 - ⇒ la complexité en temps et espace est sous-linéaire

la monnaie transférable

- une pièce reçue peut à nouveau être dépensée
- peu d'attention reçue
 - meilleurs systèmes nécessitent le retrait d'une pièce vide
 - Chaum et Pedersen ont montré qu'une pièce transférée grossit nécessairement
- mais...
 - les capacités de stockage sont de plus en plus importantes
 - ce grossissement peut être rendu minime
- difficulté: chaque dépenseur doit insérer son identité et prouver la validité de sa dépense

construction efficace

[S.C., A. Gouget, J. Traoré, Financial Cryptography 2008]

- premier schéma efficace de monnaie transférable
- plus besoin de préalablement interagir avec la banque
- principe
 - le numéro de série est tout le temps le même
 - le tag de sécurité dépend
 - du numéro de série
 - d'une valeur pseudo-aléatoire utilisée lors de la dépense précédente
 - de la clé secrète du dépenseur
 - de l'historique de la pièce

anonymat des pièces transférables

[S.C., A. Gouget, ACNS 2008]

- anonymat faible
 - infaisable de faire le lien entre un retrait et une dépense
- anonymat fort
 - infaisable de savoir si deux dépenses proviennent du même utilisateur
- anonymat complet
 - infaisable de reconnaître une pièce que l'on a déjà vu
 - proposition d'une construction générique
- anonymat parfait
 - infaisable de savoir une pièce reçu a déjà été en notre possession
 - propriété inatteignable si \mathcal{A} est tout puissant (Chaum-Pedersen)
 - propriété inatteignable si l'adversaire est la banque
 - construction générique dans les autres cas
 - \implies Alice peut dépenser/transférer efficacement ses pièces tout en protégeant sa vie privée

conclusion

Alice sait maintenant comment protéger sa vie privée

ALICE

- quand elle utilise son téléphone mobile
- avec ses contenus numériques
- quand elle vote
- quand elle se connecte à ses sites favoris
- lorsqu'elle s'habille
- dans ses dépenses

conclusion

· Alice sait maintenant comment protéger sa vie privée

ALICE

- quand elle utilise son téléphone mobile
- avec ses contenus numériques
- quand elle vote
- quand elle se connecte à ses sites favoris
- lorsqu'elle s'habille
- dans ses dépenses
- on aurait aussi pu aborder
 - la facturation anonyme du paiement d'Alice chez son opérateur...

[S.C., A. Jambert, en soumission]

...et l'utilisation des signatures "déléguées"

[S.C., F. Laguillaumie, M. Milhau, ACNS 2008]

[S.C., A. Jambert, CT-RSA 2010]

la santé

[F. Boudet, S.C., S. Guilloteau, non publié]

- cryptographie assistée
 - faire des benchmark précis pour des cas pratiques
 - prendre en compte les échanges entre le prouveur et l'intermédiaire
 - modélisation et constructions sans faire confiance à l'intermédiaire

- cryptographie assistée
 - faire des benchmark précis pour des cas pratiques
 - prendre en compte les échanges entre le prouveur et l'intermédiaire
 - modélisation et constructions sans faire confiance à l'intermédiaire
- problématique d'attestation anonyme
 - étude des briques de base
 - révocation des droits d'attestation

- cryptographie assistée
 - faire des benchmark précis pour des cas pratiques
 - prendre en compte les échanges entre le prouveur et l'intermédiaire
 - modélisation et constructions sans faire confiance à l'intermédiaire
- problématique d'attestation anonyme
 - étude des briques de base
 - révocation des droits d'attestation
- preuves de connaissance
 - utiliser les preuves de sécurité pour construire des systèmes

- cryptographie assistée
 - faire des benchmark précis pour des cas pratiques
 - prendre en compte les échanges entre le prouveur et l'intermédiaire
 - modélisation et constructions sans faire confiance à l'intermédiaire
- problématique d'attestation anonyme
 - étude des briques de base
 - révocation des droits d'attestation
- preuves de connaissance
 - utiliser les preuves de sécurité pour construire des systèmes
- les systèmes RFID
 - trouver un chiffrement à clé secrète où l'aléa du chiffrement n'est pas nécessaire (ni retrouvable) par le lecteur qui déchiffre

- cryptographie assistée
 - faire des benchmark précis pour des cas pratiques
 - prendre en compte les échanges entre le prouveur et l'intermédiaire
 - modélisation et constructions sans faire confiance à l'intermédiaire
- problématique d'attestation anonyme
 - étude des briques de base
 - révocation des droits d'attestation
- preuves de connaissance
 - utiliser les preuves de sécurité pour construire des systèmes
- les systèmes RFID
 - trouver un chiffrement à clé secrète où l'aléa du chiffrement n'est pas nécessaire (ni retrouvable) par le lecteur qui déchiffre
- monnaie électronique
 - utiliser la puissance des preuves Groth-Sahai, tout en améliorant leur efficacité
 - trouver d'autres principes pour le transfert de pièces

merci