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Abstract. We present a probabilistic private-key encryption scheme
named LPN-C whose security can be reduced to the hardness of the
Learning from Parity with Noise (LPN) problem. The proposed protocol
involves only basic operations in GF(2) and an error-correcting code. We
show that it achieves indistinguishability under adaptive chosen plain-
text attacks (IND-P2-C0). Appending a secure MAC renders the scheme
secure under adaptive chosen ciphertext attacks. This scheme enriches
the range of available cryptographic primitives whose security relies on
the hardness of the LPN problem.
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1 Introduction

The connections between cryptography and learning theory are well known since
the celebrated paper by Impagliazzo and Levin [18]. They showed that these
two areas are in a sense complementary since the possibility of cryptography
rules out the possibility of efficient learning and vice-versa. Since then, a lot
of work has dealt with building cryptographic primitives based on presumably
hard learning problems. Perhaps the most well-known of these problems among
the cryptographic community is the so called Learning from Parity with Noise
(LPN) problem, which can be described as learning an unknown k-bit vector
x given noisy versions of its scalar product a · x with random vectors a. The
prominent lightweight authentication protocol HB+ recently proposed by Juels
and Weis [19], and its variants [7,9,12,26], are based on this problem.

Our work is concerned with encryption schemes in the symmetric setting,
where a sender and a receiver share a secret key. Up to now, most of the work
in this field has concentrated on studying various operating modes to use with
a secure block cipher [2]. Departing from this approach, we will construct a
symmetric encryption scheme that does not appeal to any assumption regarding
the pseudorandomness of a block cipher, and whose security can directly be
reduced to some hard problem, namely here the LPN problem. In a nutshell,
our scheme, named LPN-C, uses a shared secret matrix M and random vectors
a to compute “noisy” masking vectors b = a ·M ⊕ ν. The vector b is then used
to mask the plaintext, preliminary encoded with an error-correcting code. The
receiver, knowing M , can remove the mask a ·M , and then the noise with the
error-correcting code. At the same time the noise ν prevents an attacker from
“learning” the secret matrix M .
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Related work. We briefly review the related work building cryptographic prim-
itives based on hard learning problems. We have already cited the authentication
protocol HB+ [19], which was itself derived from a simpler protocol named HB
by Hopper and Blum [17]. Both protocols possess a proof of security in a cer-
tain attack model relying on the LPN problem [19,20,21]. Gilbert, Robshaw, and
Sibert [13] then showed a simple man-in-the-middle attack against HB+. This
triggered many trials to modify and protect HB+ against man-in-the-middle
attacks [7,9,26] but these three proposals were recently broken [11]. The subse-
quent proposal HB# [12] is the only one to be provably secure against (some)
man-in-the-middle attacks.

Former proposals were made by Blum et al. [5], who described a pseudoran-
dom number generator (PRNG), a one-way function, and a private-key cryp-
tosystem (encrypting only one bit at a time, thus much less efficient than the
proposal in this paper) based on very general hard-to-learn class of functions.
They also proposed a PRNG explicitly based on the LPN problem (rather than
on general class of functions) derived from an older proposal of one-way func-
tion based on the hardness of decoding a random linear code [14]. More recently,
Regev [28] proposed a public-key cryptosystem based on the so-called LWE
(Learning with Error) problem, a generalization of the LPN problem to fields
GF(p), p > 2 (and proved that an efficient algorithm for the LWE problem would
imply an efficient quantum algorithm for worst-case lattice problems).

LPN-C carries some similarity with a scheme by Rao and Nam [27], which
may be seen as a secret-key variant of the McEliece cryptosystem, and with the
trapdoor cipher TCHo [1], by Aumasson et al. In the later, the additional noise
added to C(x)⊕ ν is introduced via an LFSR whose feedback polynomial has a
low-weight multiple used as the trapdoor.

Organisation. Our paper is organised as follows. First we give some basic
definitions and facts about the LPN problem and private-key encryption. Then
we describe the encryption scheme LPN-C. In Section 4 we analyse the security
of the scheme, in particular we establish that it is secure in the sense IND-
P2-C0. In Section 5 we give some practical parameter values and explore some
possible variants of the scheme. Finally, we draw our conclusions and suggest
some potential future work.

2 Preliminaries

Basic Notation. In the sequel, the security parameter will be denoted by k,
and we will say that a function of k (from positive integers to positive real
numbers) is negligible if it approaches zero faster than any inverse polynomial,
and noticeable if it is larger than some inverse polynomial (for infinitely many
values of k). An algorithm will be efficient if it runs in time polynomial in k and
possibly the size of its inputs. PPT will stand for Probabilistic Polynomial-Time
Turing machine.
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We use bold type x to indicate a row vector while scalars x are written
in normal text. The i-th bit of x is denoted x[i]. The bitwise addition of two
vectors will be denoted ⊕ just as for scalars, the scalar product of a and b will
be denoted a · b, and their concatenation a‖b. We denote the Hamming weight
of x by Hwt(x).

Given a finite set S and a probability distribution ∆ on S, s ← ∆ denotes
the drawing of an element of S according to ∆ and s $←− S denotes the random
drawing of an element of S endowed with the uniform probability distribution.
Berη will denote the Bernoulli distribution of parameter η ∈]0, 1

2 [, i.e. a bit
ν ← Berη is such that Pr[ν = 1] = η and Pr[ν = 0] = 1− η. We also define the
corresponding vectorial distribution Bern,η: an n-bit vector ν ← Bern,η is such
that each bit of ν is independently drawn according to Berη. Finally, we will need
to define the two following oracles: we will let Un denote the oracle returning
independent uniformly random n-bit strings, and for a fixed k-bit string s, Πs,η
will be the oracle returning independent (k + 1)-bit strings according to the
distribution (to which we will informally refer to as an LPN distribution):

{a $←− {0, 1}k; ν ← Berη : (a,a · s⊕ ν)} .

The LPN problem. The LPN problem is the problem of retrieving s given
access to the oracle Πs,η. For a fixed value of k, we will say that an algorithm
A (T, q, δ)-solves the LPN problem with noise parameter η if A runs in time at
most T , makes at most q oracle queries, and

Pr
[
s

$←− {0, 1}k : AΠs,η (1k) = s
]
≥ δ .

By saying that the LPN problem is hard, we mean that any efficient ad-
versary solves it with only negligible probability. There is a significant amount
of literature dealing with the hardness of the LPN problem. It is closely re-
lated to the problem of decoding a random linear code [4] and is NP-Hard. It
is NP-Hard to even find a vector x satisfying more than half of the equations
outputted by Πs,η [16]. The average-case hardness has also been intensively in-
vestigated [5,6,17]. The current best known algorithms to solve it are the BKW
algorithm due to Blum, Kalai, and Wasserman [6] and its improved variants
by Fossorier et al. [10] and Levieil and Fouque [23]. They all require 2Θ(k/ log k)

oracle queries and running time.

Private-key encryption. We briefly recall the basic definitions dealing with
the semantics of probabilistic private-key encryption.

Definition 1 (Private-key cryptosystem). A probabilistic private-key en-
cryption scheme is a triple of algorithms Γ = (G, E ,D) such that:

– the key generation algorithm G, on input the security parameter k, returns
a random secret key K ∈ K(k): K $←− G(1k);
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– the encryption algorithm E is a PPT algorithm that takes as input a secret
key K and a plaintext X ∈ {0, 1}∗ and returns a ciphertext Y : Y ← EK(X);

– the decryption algorithm D is a deterministic, polynomial-time algorithm
that takes as input a secret key K and a string Y and returns either the
corresponding plaintext X or a special symbol ⊥: DK(Y ) ∈ {0, 1}∗ ∪ {⊥}.

It is usually required that DK(EK(X)) = X for all X ∈ {0, 1}∗. One can
slightly relax this condition, and only require that DK(EK(X)) = X except
with negligible probability.

3 Description of LPN-C

Let C : {0, 1}r → {0, 1}m be an [m, r, d] error-correcting code (i.e. of length m,
dimension r, and minimal distance d) with correction capacity t = bd−1

2 c. This
error-correcting code is assumed to be publicly known. Let M be a secret k×m
matrix (constituting the secret key of the cryptosystem). To encrypt an r-bit
vector x, the sender draws a k-bit random vector a and computes

y = C(x)⊕ a ·M ⊕ ν ,

where ν ← Berm,η is an m-bit noise vector such that each of its bits is (inde-
pendently) 1 with probability η and 0 with probability 1− η. The ciphertext is
the pair (a,y).

Upon reception of this pair, the receiver decrypts by computing y⊕a ·M =
C(x)⊕ν, and decoding the resulting value. If decoding is not possible (which may
happen when the code is not perfect), then the decryption algorithm returns ⊥.
When the message is not r-bit long, it is padded till its length is the next multiple
of r and encrypted blockwise. The steps for LPN-C are given in Fig. 1.

Parameters Security parameter k
Polynomials (in k) m, r, d with m > r
Noise level η ∈]0, 1

2
[

Public Components An [m, r, d] error-correcting code C : {0, 1}r → {0, 1}m
and the corresponding decoding algorithm C−1

Secret Key Generation On input 1k, output a random k ×m binary matrix M
Encryption Algorithm On input an r-bit vector x, draw a random k-bit vector

a and a noise vector ν, compute y = C(x)⊕ a ·M ⊕ ν,
and output (a,y)

Decryption Algorithm On input (a,y), compute y ⊕ a ·M , decode the result-
ing value by running C−1 and return the corresponding
output or ⊥ if unable to decode

Fig. 1. Description of LPN-C.

As can be seen from its description, LPN-C encryption involves only ba-
sic operations (at least when a simple linear code is used) reduced to scalar
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products and exclusive-or’s. The decryption requires to implement the decod-
ing procedure, which implies more work on the receiver side, though there are
error-correcting codes with very efficient decoding algorithms [25].

Decryption failures. Decryption failures happen when the Hamming weight of
the noise vector ν is greater than the correction capacity t of the error-correcting
code, Hwt(ν) > t. When the noise vector is randomly drawn, the probability of
decryption failure is given by

PDF =
m∑

i=t+1

(
m

i

)
ηi(1− η)m−i .

In order to eliminate such decryption failures, the Hamming weight of the
noise vector can be tested before being used. If Hwt(ν) > t, the sender draws a
new noise vector according to Berm,η. When the parameters are chosen such that
ηm < t, then this happens only with negligible probability and the encryption
algorithm remains efficient.

4 Security Proofs

4.1 Security model

The security notions for probabilistic private-key encryption have been formal-
ized by Bellare et al. [2] and thoroughly studied by Katz and Yung in [22]. The
two main security goals for symmetric encryption are indistinguishability (IND)
and non-malleability (NM). Indistinguishability deals with the secrecy afforded
by the scheme: an adversary must be unable to distinguish the encryption of two
(adversarially chosen) plaintexts. This definition was introduced in the context
of public-key encryption as a more practical equivalent to semantic security [15].
Non-malleability was introduced (again in the context of public-key encryption)
by Dolev, Dwork, and Naor [8] and deals with ciphertext modification: given
a challenge ciphertext Y , an adversary must be unable to generate a different
ciphertext Y ′ so that the respective plaintexts are meaningfully related.

Adversaries run in two phases (they are denoted as a pair of algorithms
A = (A1,A2)) and are classified according to the oracles (encryption and/or de-
cryption) they are allowed to access in each phase. At the end of the first phase,
A1 outputs a distribution on the space of the plaintexts (i.e. a pair of plaintexts
(x1,x2) of probability 1/2 each in the case of IND or a more complex distribu-
tion in the case of NM). Then, a ciphertext is selected at random according to
the distribution and transmitted to A2 (this represents A’s challenge) and the
success of A is determined according to the security goal (e.g. in the case of IND,
determine whether x1 or x2 was encrypted). The adversary is denoted PX-CY ,
where P stands for the encryption oracle and C for the decryption oracle, and
where X,Y ∈ {0, 1, 2} indicates when A is allowed to access the oracle:

– 0: A never accesses the oracle
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– 1: A can only access the oracle during phase 1, hence before seeing the
challenge (also termed non-adaptive)

– 2: A can access the oracle during phases 1 and 2 (also termed adaptive)

We only give the formal definition of indistinguishability since this is the security
goal we will be primarily interested in. A formal definition of non-malleability
can be found in [22].

Definition 2 (IND-PX-CY). Let Γ = (G, E ,D) be an encryption scheme and
let A = (A1,A2) be an adversary. For X,Y ∈ {0, 1, 2} and a security parameter
k, the advantage of A in breaking the indistinguishability of Γ is defined as:

Advind-px-cy
A,Γ (k)

def=
∣∣∣∣Pr

[
K

$←− G(1k); (x0,x1, s)← A
O1,O′

1
1 (1k);

b
$←− {0, 1};y ← EK(xb) : AO2,O′

2
2 (1k, s,y) = b

]
− 1

2

∣∣∣∣
where (O1,O2) is (∅, ∅), (EK(·), ∅), (EK(·), EK(·)) when X is resp. 0, 1, 2 and
(O′1,O′2) is (∅, ∅), (DK(·), ∅), (DK(·),DK(·)) when Y is resp. 0, 1, 2, and s is
some state information. Note that the plaintexts returned by A1 must respect
|x0| = |x1| and that when Y = 2, A2 is not allowed to query DK(y).
We say that Γ is secure in the sense IND-PX-CY if Advind-px-cy

A,Γ (k) is negli-
gible for any PPT adversary A.

Important relationships between the different security properties have been
proved by Katz and Yung [22]. The most meaningful for us are:

– non-adaptive CPA-security implies adaptive CPA-security:

IND-P1-CY ⇒ IND-P2-CY and NM-P1-CY ⇒ NM-P2-CY

– IND and NM are equivalent in the case of P2-C2 attacks (but unrelated for
other attacks): IND-P2-C2⇔ NM-P2-C2.

4.2 Proof of indistinguishability under chosen plaintext attacks

We now prove that LPN-C is secure in the sense IND-P2-C0, by reducing its
security to the LPN problem. First, we will recall the following useful lemma
which was proved in [20] following [28], and which states that the hardness of the
LPN problem implies that the two oracles Uk+1 and Πs,η are indistinguishable.

Lemma 1 ([20], Lemma 1). Assume there exists an algorithm M making q
oracle queries, running in time T , and such that∣∣∣Pr

[
s

$←− {0, 1}k : MΠs,η (1k) = 1
]
− Pr

[
MUk+1(1k) = 1

]∣∣∣ ≥ δ .

Then there is an algorithm A making q′ = O(q ·δ−2 log k) oracle queries, running
in time T ′ = O(T · kδ−2 log k), and such that

Pr
[
s

$←− {0, 1}k : AΠs,η (1k) = s
]
≥ δ

4
.
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A full proof of this result can be found in [20]. We will reduce the security of
LPN-C to the problem of distinguishing Uk+1 and Πs,η rather than directly to
the LPN problem.

Theorem 1. Assume there is an adversary A, running in time T , and attacking
LPN-C with parameters (k,m, r, d, η) in the sense of IND-P2-C0 with advantage
δ by making at most q queries to the encryption oracle. Then there is an algo-
rithmM making O(q) oracle queries, running in time O(T ), and such that∣∣∣Pr

[
s

$←− {0, 1}k : MΠs,η (1k) = 1
]
− Pr

[
MUk+1(1k) = 1

]∣∣∣ ≥ δ

m
.

Proof. As already pointed out, non-adaptive CPA-security (P1) implies adaptive
CPA-security (P2), hence we may restrict ourselves to adversaries accessing the
encryption oracle only during the first phase of the attack (before seeing the
challenge ciphertext).

The proof proceeds by a hybrid argument. We will first define the following
hybrid distributions on {0, 1}k+m. For j ∈ [0..m], let M ′ denote a k × (m − j)
binary matrix. We define the probability distribution Pj,M ′,η as

{a $←− {0, 1}k; r $←− {0, 1}j ;ν ← Ber(m−j),η : a‖r‖(a ·M ′ ⊕ ν)} .

Hence the returned vector a‖b is such that the first j bits of b are uniformly
random, whereas the last (m − j) bits are distributed according to (m − j)
independent LPN distributions related to the respective columns of M ′. Note
that Pm,M ′,η = Uk+m.

We will also define the following hybrid encryption oracles E ′j,M ′,η associated
with the secret matrix M ′ and noise parameter η: on input the r-bit plaintext
x, the encryption oracle encodes it to C(x), draws a random (k+m)-bit vector
a‖b distributed according to Pj,M ′,η, and returns (a, C(x)⊕ b).

We now describe how the distinguisherM proceeds. Recall thatM has access
to an oracle and wants to distinguish whether this is Uk+1 or Πs,η. On input the
security parameter 1k, M draws a random j ∈ [1..m]. If j < m, it also draws
a random k × (m− j) binary matrix M ′. It then launches the first phase A1 of
the adversary A. Each time A1 asks for the encryption of some x,M obtains a
sample (a, z) from its oracle, draws a random (j − 1)-bit vector r $←− {0, 1}j−1,
and draws a (m − j)-bit noise vector ν distributed according to Ber(m−j),η. It
then forms the masking vector b = r‖z‖(a ·M ′ ⊕ ν) and returns (a, C(x)⊕ b).

The adversary A1 then returns two plaintexts x1 and x2. The distinguisher
M selects a uniformly random α ∈ {1, 2} and returns to A2 the ciphertext
corresponding to xα encrypted exactly as described just before. If the answer of
A2 is correct, thenM returns 1, otherwise it returns 0.

It is straightforward to verify that whenM’s oracle is Uk+1,M simulates the
encryption oracle E ′j,M ′,η, whereas when M’s oracle is Πs,η, then M simulates
the encryption oracle E ′j−1,M ′′,η where M ′′ = s‖M ′ is the matrix obtained as
the concatenation of s and M ′. Hence the advantage of the distinguisher can be
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expressed as

Adv =
∣∣∣Pr
[
s

$←− {0, 1}k : MΠs,η (1k) = 1
]
− Pr

[
MUk+1(1k) = 1

]∣∣∣
=

1
m

∣∣∣∣∣∣
m−1∑
j=0

Pr
[
AE

′
j,M′,η succeeds

]
−

m∑
j=1

Pr
[
AE

′
j,M′,η succeeds

]∣∣∣∣∣∣
=

1
m

∣∣∣Pr
[
AE

′
0,M′,η succeeds

]
− Pr

[
AE

′
m,M′,η succeeds

]∣∣∣ .
Note that the encryption oracle E ′0,M ′,η is exactly the real LPN-C encryption
oracle. On the other hand the encryption oracle E ′m,M ′,η encrypts all plaintexts
by blinding them with uniformly random vectors b so that in this case the
adversary A cannot do better (or worse) than guessing α at random and has a
success probability of 1/2. Hence∣∣∣Pr

[
AE

′
0,M′,η succeeds

]
− Pr

[
AE

′
m,M′,η succeeds

]∣∣∣
is exactly the advantage of the adversary which is greater than δ by hypothesis.
The theorem follows. ut

Remark 1. Note that when the error-correcting code is linear, the scheme is
clearly malleable, even when the adversary has no access at all to the encryption
nor the decryption oracle (the scheme is not NM-P0-C0). Indeed, an adversary
receiving a ciphertext (a,y) corresponding to some plaintext x, can forge a new
ciphertext corresponding to some other plaintext x⊕x′ simply by modifying the
ciphertext to (a,y ⊕ C(x′)). The same kind of attacks, though more elaborate,
would probably apply for non-linear error-correcting codes. Since NM-P2-C2 is
equivalent to IND-P2-C2, the scheme cannot be IND-P2-C2 either. We investi-
gate the security with respect to IND-P2-C1 attacks in the next subsection.

4.3 An IND-P0-C1 attack.

Here we show that the scheme is insecure (i.e. distinguishable) when the attacker
has (non-adaptive) access to the decryption oracle. The idea is to query the
decryption oracle many times with the same vector a in order to get many
approximate equations on a ·M . Consider an adversary querying the decryption
oracle with ciphertexts (a,yi) for a fixed a and random yi’s. Each time yi⊕a·M
is at Hamming distance less than t from a codeword, the decryption oracle will
return xi such that Hwt(C(xi)⊕yi⊕a·M) ≤ t. This will give an approximation
for each bit of a ·M with noise parameter less than t

m .
Indeed, let us fix some bit position j, and evaluate the probability p that,

given that the decryption oracle returned the plaintext xi, the j-th bit of a ·M
is not equal to the j-th bit of C(xi)⊕ yi:

p = Pr
yi

$←−{0,1}m

[
(a ·M)[j] 6= (C(xi)⊕ yi)[j]

∣∣∣DK(a,yi) = xi

]
.
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Obviously, the sum over j of this quantity is equal to the expected value of the
number of errors, hence is less than t. Consequently the error probability is less
than t/m. Assume the vector a was chosen to have only one non-null coordinate
(say, the l-th one). Then this will enable to retrieve with high confidence the
bit in position (l, j) of the secret matrix M with a few attempts (according
to the Chernoff bound, since the repeated experiments use independent yi’s).
Repeating the procedure k · m times will enable the adversary to retrieve the
matrix M , which completely compromises the security of the scheme.

Note that for this reasoning to be correct, the probability that the decryption
oracle does not return ⊥ must be noticeable. Otherwise the adversary will have
to make an exponential number of attempts to get enough equations. Clearly

Pr
yi

$←−{0,1}m

[
DK(a,yi) 6=⊥

]
= 2r

t∑
i=0

(
m
i

)
2m
' 2−(1− r

m−H( tm ))m ,

where H is the entropy function H(x) = −x log2(x) − (1 − x) log2(1 − x). The
concrete value of this probability will depend on the error-correcting code which
is used. If it is good enough this value will not be too small.

At the same time this suggests a method to thwart the attack. Assume that
LPN-C is modified in the following way: an additional parameter t′ such that
ηm < t′ < t is chosen. When the number of errors in y⊕a ·M is greater than t′
(i.e. y⊕a ·M is at Hamming distance greater than t′ from any codeword), the
decryption algorithm returns ⊥. If t′ is such that 2−(1− r

m−H( t
′
m ))m is negligible,

then the previous attack is not possible anymore. At the same time, this implies
to drastically reduce the noise parameter η and the LPN problem becomes easier.
The scheme also remains malleable, as the attack in Remark 1 remains applicable
(hence the scheme cannot be IND-P2-C2 either). However, it could be that such
a modified scheme is IND-P2-C1. This remains an open problem.

4.4 Achieving P2-C2 security

The most straightforward way to get an encryption scheme secure against chosen-
ciphertext attacks from an encryption scheme secure against chosen-plaintext
attacks is to add message authenticity, e.g. by using a Message Authentication
Code (MAC). This idea was suggested in [8,22] and was carefully studied by
Bellare and Namprempre [3]. They explored the three paradigms Encrypt-and-
MAC, MAC-then-Encrypt and Encrypt-then-MAC and showed that the later
one was the most secure way to proceed. More precisely, assume that the sender
and the receiver share an additional secret key Km for the goal of message
authentication, and let MACKm(·) be a secure1 MAC. LPN-C is modified as
follows: let A = (a1, . . . ,an) be the vectors used to encrypt in LPN-C, and Y =
(y1, . . . ,yn) be the ciphertexts to transmit. A MAC of the ciphertext is added

1 that is, strongly unforgeable under chosen plaintext attacks; see [3] for a precise
definition.
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to the transmission and computed as τ = MACKm(A‖Y ). The decryption
algorithm is modified to return ⊥ each time the MAC is not valid.

Given that the original scheme is IND-P2-C0, generic results of [3] imply that
the enhanced scheme is IND/NM-P2-C2. This generic method has the drawback
to rely on an additional assumption, namely the unforgeability of the MAC. We
go one step further and propose a way to build a MAC only relying on the LPN
problem and a one-way function.

Let M2 be a secret l× l′ binary matrix, where l and l′ are polynomials in k.
Let H : {0, 1}∗ → {0, 1}l be a one-way function. For X ∈ {0, 1}∗ define

MACM2(X) = H(X) ·M2 ⊕ ν′

where ν′ ← Berl′,η. We sketch the proof of the security of this MAC in the
Random Oracle model in the full version of this paper.

5 Concrete Parameters for LPN-C

We now discuss some example parameters for LPN-C as well as some possi-
ble practical variants. We will define the expansion factor of the scheme as
σ = |ciphertext|

|plaintext| = m+k
r , and the secret key size |K| = k · m. There are vari-

ous trade-offs possible when fixing the values of the parameters (k, η,m, r, d).
First, the hardness of the LPN problem depends on k and η (it increases with k
and η). However an increase to k implies a higher expansion factor and a bigger
key size, whereas an increase to η implies to use a code with a bigger correction
capacity and minimal distance, hence a bigger factor m

r . Depending on how the
noise vectors ν are generated, decryption failures may also be an issue.

Example values for k and η were given by Levieil and Fouque [23]. If one
is seeking 80-bit security, suitable parameters are (k = 512, η = 0.125), or
(k = 768, η = 0.05). Example parameters for LPN-C are given below, where we
used the list of Best Known Linear Codes available in magma 2.13 [24].

LPN-C expansion storage storage decryption
k η m r d factor σ |K| (bits) (Toeplitz) failure PDF

512 0.125 80 27 21 21.9 40, 960 591 0.42
512 0.125 160 42 42 16 81, 920 671 0.44
768 0.05 80 53 9 16 61, 440 847 0.37
768 0.05 160 99 17 9.4 122, 880 927 0.41
768 0.05 160 75 25 12.4 122, 880 927 0.06

Possible variants. A first possibility is to increase the size of the secret matrix
M in order to decrease the expansion factor σ. Indeed, assume that M is now a
k × (n ·m) binary matrix for some integer n > 1. Then it becomes possible to
encrypt n blocks of r bits with the same random vector a. The expansion factor
becomes σ = n·m+k

n·r . Asymptotically when n increases, the expansion factor of
the scheme tends to the one of the error-correcting code m

r .
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Another possibility would be to pre-share the vectors ai’s, or to generate
them from a small seed an a pseudorandom number generator. The expansion
factor would then fall to σ = m

r , but synchronization issues could arise.
Finally, we mention the possibility (already used in HB# [12]) to use Toeplitz

matrices in order to decrease the size of the secret key. A (k×m)-binary Toeplitz
matrix M is a matrix for which the entries on every upper-left to lower-right
diagonal have the same value. The entire matrix is specified by the top row and
the first column. Thus a Toeplitz matrix can be stored in k +m− 1 bits rather
than the km bits required for a truly random matrix. However, the security
implications of such a design choice remain to be studied.

6 Conclusions

We have presented LPN-C, a novel symmetric encryption scheme whose security
can be reduced to the LPN problem. Due to the low-cost computations (es-
sentially of bitwise nature) required on the sender side, this encryption scheme
could be suitable for environments with restricted computation power, typically
RFIDs. Moreover, due to some similarities it could be possible to combine it
with one of the authentication protocols HB+ or HB#.

Among open problems we highlight the design of an efficient MAC directly
from the LPN problem without any other assumption, as well as an understand-
ing of the impact of the use of Toeplitz matrices in LPN-C (and HB#).
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