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Abstract. In a group signature scheme, group members are able to
sign messages on behalf of the group. Moreover, resulting signatures are
anonymous and unlinkable for every verifier except for a given author-
ity. In this paper, we mainly focus on one of the most secure and effi-
cient group signature scheme, namely XSGS proposed by Delerablée and
Pointcheval at Vietcrypt 2006. We show that it can efficiently be imple-
mented in a sensor node or an RFID tag, even if it requires 13 elliptic
curve point multiplications, 2 modular exponentiations and one pairing
evaluation to produce a group signature. This is done by securely out-
sourcing part of the computation to an untrusted powerful intermediary.
The result is that XSGS can be executed in the MICAz (8-bit 7.37MHz
ATmegal28 microprocessor) and the TelosB (16-bit 4AMHz MSP430 pro-
cessor) sensor nodes in less than 200 ms.

Keywords. Constrained devices, server-aided computation, group sig-
nature, anonymity.

1 Introduction

Group signatures have been introduced by Chaum and van Heyst [9], and showed
to be extremely useful in various applications such as anonymous credentials, e-
cash, e-vote and identity management. These signatures allow any member of
a group to sign a document and any verifier to confirm that the signature has
been computed by a group member. Moreover, group signatures are anonymous
and unlinkable for every verifier except, when needed, for a given authority.
While being very appealing, implementing these signature schemes on low-power
devices, like sensor nodes or RFID tags, appears to be a particularly challenging
task, as the computation of a signature typically requires numerous modular
exponentiations or pairing evaluations. For instance, it is necessary to compute
13 elliptic curve point multiplications, 2 modular exponentiations and 1 pairing
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to produce a DLIN based eXtremely Short Group Signature (XSGS) [14], one
of the most efficient and powerful schemes available today.

In this paper, we design a cooperative variant of the XSGS group signature
scheme [14]. Our result is efficient enough to permit the group member to be
associated to a constrained device which interacts with an intermediary (which
can belong to the group member, e.g. a personal computer).

Related Work. The way to embed cryptography into low-power devices has been
largely studied by the cryptographic community. One solution is to make pre-
computations but this has the drawback of consuming a lot of memory space
and thus simply shifts the problem. Another possibility is to modify the crypto-
graphic mechanism to fit the device restrictions. This has already been done in
the RFID case [19, 15] or when considering the integration of group signatures in
a smart card [8, 36]. This may necessitates important modifications of the initial
algorithm, and may imply some stronger (and questionable) assumptions such
as, e.g. , tamper-resistance.

In this paper, we focus on a second approach, which consists in studying how
a more powerful entity can help a small device to provide a group signature, as
introduced in [27] and later used for DAA in e.g. [6]. Another approach has also
been taken in the CAFE project [10, 11], which consists in designing schemes
where a powerful prover interacts with a non-trusted smart card to perform
some computations in such a way that the prover is unlinkable w.r.t. the smart
card.

Our Contributions. The introduction of an intermediary device in a signature
scheme must be carefully understood if one wants to avoid introducing severe
security flaws in the system. Our contribution in this direction is threefold.

To begin with, we propose the first complete security model for coopera-
tive group signatures. Our model allows clarifying the exact level of trust that is
placed into the intermediary, this trust directly impacting the amount of compu-
tation that can be outsourced by the tag. The trust we place in the intermediary
is quite limited: even compromised, it is not able to impersonate the signer. With
this property, the security of standard group signature systems can be improved:
the group members’ secrets can be stored in well-protected embedded devices
like contactless smart cards instead of being present in their personal computer,
which may be unsecure (e.g. infected with a trojan).

Then, we propose a new cooperative group signature scheme, based on the
XSGS protocol [14], and prove its security in our model. Our scheme is efficient
enough to be implemented on small embedded devices.

We demonstrate this by documenting implementation results on two common
wireless sensor nodes, the MICAz and the TelosB sensor nodes, the processor of
the TelosB node being also used in contactless secure government electronic ID
chips. The on-line phase of the protocol can be completed in less than 200 ms.
The off-line phase requires four to six seconds to be completed, but this can be
mitigated with a coupon mode (from [29] and the EU project CAFE ESPRIT
7023), which allows a node to pre-compute or pre-load up to 5000 coupons in
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advance, while satisfying the memory constraints of our devices. We also show
that, in our case, new coupouns can be added at any time (at home, for instance),
without any problem.

This article thus provides fundamental building blocks for the deployment of
low-power privacy preserving applications, in contexts where the nodes involved
in the applications cannot perform heavy computations, which is the case most
of the time for the moment.

Outline. After a brief reminder on group signatures (Section 2), we extend the
standard security properties to the cooperative setting (Section 3). Next, we
present our cooperative XSGS protocol and prove its security with respect to
our new security definitions (Section 4). We eventually demonstrate that our
protocol can be executed on small devices, by presenting and discussing the
performance of its implementation on small wireless sensor devices, of which the
controllers are also sometimes included in RFID tags (Section 5).

2 Definition of Group Signature Schemes

In [9], Chaum and van Heyst introduce the notion of group signature schemes [1,
3,17,14, 5, 22] where members of the group can sign documents and any verifier
can confirm that the signature comes from a group member. Moreover, group
signatures are anonymous and unlinkable for every verifier except for a given
authority.

2.1 Generic Description of Group Signatures

Formally speaking, a group signature scheme GS is described by the following
polynomial-time procedures, where \ is a security parameter.

— GENPARAM is a probabilistic algorithm which takes as input 1* and which
outputs the public parameters of the system PP = (Gpk, Rpk, params) where
Gpk is the group’s public key, Rpk is the public key of the opening manager
and params are public parameters (e.g. mathematical groups, generators,...),
it also outputs the group manager’s secret key gmsk and the opening man-
ager’s secret key rsk;

— USeERKEYGEN is a probabilistic algorithm which attributes to a user a pair
of secret/public key (usk, Upk) respecting a PKI.

— JOIN is a probabilistic protocol between the group manager and a new group
member U; to provide the latter with his group secret key gsk[i]. The group
manager makes an entry Tab[i] in the registration table Tab, with the entire
transcript of the process.

— SIGN is a probabilistic algorithm which takes as input a secret signing key
gsk[i] and a message m and returns the group signature o on m;

— VERIF is a deterministic algorithm which takes as input a message m, and
a signature o and returns either 1 if the signature is valid or 0 otherwise;
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— OPEN is a deterministic algorithm which takes as input the opening manager
secret key rsk, the registration table Tab, a message m and a signature ¢ and
returns either an identity 7 or the symbol L to indicate a failure, together
with a proof 7 of this claim;

— JUDGE is a deterministic algorithm which takes as input the registration
table Tab, a message m, a signature o, an identity ¢ and a proof 7 and returns
1 if the proof 7 is a valid proof that user ¢ has produced the signature ¢ and
0 otherwise.

2.2 Security Properties

We outline the formal security properties from the BSZ model, introduced by
Bellare et al. [2], that are expected for (dynamic) group signature schemes.

— Correctness: a signature produced by a valid user U; must be accepted by a
verifier. Furthermore, the opening of this signature must return the identity
of U; and the judge must validate this opening.

— Anonymity: given several signatures of a user (randomly chosen among two
users), it is infeasible to distinguish which of these two users have produced
this set of signatures.

— Traceability: it is infeasible to produce a valid signature which cannot
be opened or where the proof outputted by OPEN cannot be verified. This
property must be verified even if several users and the group manager collude.

— Non-Frameability: it is infeasible, even for the opening and the group
manager, to claim falsely that a signature has been produced by a user.

To prove that a scheme ensures these properties, Bellare et al. [2] define for
each of these properties an experiment played by an adversary. Depending on
the concerned property, the adversary has several possibilities to interact with
the system. For example, an adversary can corrupt some users and thus obtains
their group secret keys. In some cases, the group manager can be corrupted and
thus the adversary can play his role during a JOIN procedure. All the possible
interactions are realized through oracles which are listed below. Moreover, a list
of honest users HU/ and one of corrupted users CU are needed.

— O¢reateU; this oracle generates a new user i using USERKEYGEN.

— OAddU(}): this oracle adds a new user i in the group using USERKEYGEN
and the interactive protocol JOIN. The identity of this new user is added to
the list HUA. The new public key Upk; is outputted.

— O%%in(}): during the request to this oracle, the adversary will play the role
of the group manager during a JOIN protocol with a new honest user. First
of all, the oracle generates a new user i with USERKEYGEN and simulates
him during the protocol with the adversary. This new user is added to HU.

— OUJin: this oracle simulates the group manager during a JOIN protocol where
the adversary plays the role of the user.
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— O“PtU(4): this oracle gives the total control of the user i to the adversary. In
other words, the adversary obtains all the information related to this user
(secret keys, random values, ...). The member i is moved from HU to CU.

— OReveal(}): this oracle outputs the secret keys (usk[i], gsk[i]) of the member i.

— 058"V (j m): this oracle outputs the signature o on m of the member i and
adds the tuple (m,o,4) in Set (initially empty).

— OOPen(m, o) this oracle outputs the identity of the user which produced o.

— OChooses (1 g, iy ): if 4o or 4y have not been given as input to OV (i.e.
10,91 ¢ HU), this oracle outputs the signature o on the message m of the
member i, (where b is a bit). ¢ cannot be given in input to the O°P" oracle.

2.3 Some Group Signature Constructions

In this paper we focus on group signatures based on the use of pairings [3,17,
14] since they are relatively efficient (compared to standard model based group
signatures [22]) and does not need the manipulation of big integers (contrary
to [1,7]). The BBS scheme [3] only considers static group while others [17, 14]
are secure in the dynamic case [2]. We here base our study on a variant of
the XSGS protocol from [14], which one is described in Appendix A. In fact,
our study is also relevant for the scheme in [17] but we have chosen the XSGS
one as it includes a complete security study®. To prevent the use of the XDH
assumption, which may be seen as a too strong assumption, we adapt XSGS (as
suggested in [14]) by replacing the El Gamal encryption scheme [18] by the Linear
encryption [3], at the cost of a slightly bigger group signature. In a nutshell, a
user owns a group secret key gsk and a certificate (A, z) such that (x+gmsk).A =
G1 + gsk.Rpk;, where GG; is a parameter, Rpk; the opening manager public key,
and gmsk is the group manager secret key. To sign a message on behalf of the
group, a member produces a double encryption of A and a signature of knowledge
of m which must prove that the double encryption contains a part of a valid
certificate (and is thus linked to the group master secret key).

The main drawback of XSGS is that it needs one pairing evaluation, many
elliptic curve point multiplications and modular exponentiations (13 and 2 re-
spectively) to produce a group signature. But this is the case for many other
group signature schemes. In fact, this complexity places XSGS as one of the most
efficient group signature scheme which is today available. Our purpose in this
paper is now to propose a secure (see next section) and efficient (see Sections 4
and 5) cooperative version of XSGS.

3 Security of Cooperative Group Signatures

A cooperative group signature [27] allows a group member, with constrained
resources, to be helped by some powerful entity, called an intermediary, in the

3 In order to reach the full anonymity property described in [2], the proposal in [14]
uses the Naor-Yung methodology [30], and thus twice the same encryption scheme
with the same message together with a proof. The scheme in [17] does not totally
uses this method and the resulting security is not discussed in the paper.

Appeared in K. H. Rhee and D. Nyang (Eds.): ICISC 2010, volume 6829 of LNCS, pp.
133-150, 2010.
(© Springer-Verlag Berlin Heidelberg 2010



production of the group signature. The group member is here the constrained
device, while the role of the intermediary is played by a more powerful entity, e.g.
a personal computer. Note that the cooperative system also requires verifiers,
which have the same role as in standard group signatures. The problem on
which we focus is that the intermediary may have some more knowledge that is
traditionally not available for the adversary. We thus give all the assumptions
about the intermediary and we next adapt the security properties of a group
signature scheme in this context. This work has not been totally done in [27, 6].

3.1 Concept and Assumptions

We first assume that the intermediary does not know any secret information and
thus, at the beginning of a protocol, the signer may transfer some data to the
intermediary in order to decrease its computation complexity. Consequently, an
adversary may obtain more information to break the security of the scheme, e.g.
by eavesdropping. It is thus obvious that we must model all her new abilities.

In the cooperative setting, the “standard” adversary (meaning the adversary
of the original group signature scheme) can be improved in three different man-
ners. Firstly, the adversary can obtain from the intermediary all data that have
been sent by the device. Secondly, she can eavesdrop all communications during
a signature protocol (at least the shared data but potentially more information).
Finally, she can impersonate the intermediary, and thus obtain all the exchanged
information. Moreover, she can learn all the choices made by the intermediary
during the protocol (e.g. random values). It is clear that the last adversary is
more powerful than the two others. Consequently, we only formally model this
one in the cooperative setting and thus introduce the new following oracle.

— OPartialSign(i;m) . this oracle simulates for the adversary the behaviour of the
user i realizing the cooperative signature of a message m. Several exchanges
between the oracle and the adversary can be done as it simulates a real coop-
erative protocol execution between a constrained device and the adversary
playing the role of the intermediary.

Based on this new adversary’s ability, we must adapt the security properties
of group signature schemes to the cooperative setting, based on the formal model
of Bellare et al. [2].

3.2 Adaptation of the Correctness

The first security property concerns the correctness and focus on the signature,
the opening and the judge verification. In our cooperative context, we decide
that the intermediary realizes the connection with the “outside world”. Thus, if
it decides to send a false signature, the signer cannot do anything to rectify this.
Consequently, it seems impossible to ensure such correctness when the adversary
can actively participate during the experiment. Nevertheless, the cooperative
protocol should at least ensure the “standard” correctness property.
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Definition 1. The correctness predicate of a group signature scheme, denoted
EGIS s wverified for a user i and a message m if and only if the following

conditions are verified:

VERIF(m, SIGN(gsk[i],m)) =1 A OPEN(rsk Tab, m, SIGN(gsk[i],m)) = (i,T)
A JUDGE( Tab, m, SIGN(gskl[i],m),i,T) =

We denote ES55(i,m) = 1 if this predicate is true, and 0 otherwise.
A cooperative scheme ensures the correctness property if there exists a negli-

gible function e(\) such that:
Y(i,m): Pr[€SS5(i,m) = 0] < e())

corr

Remark 1. In case the intermediary is “behind” the signer and has no link with
the verifier, it is possible to define a strong cooperative completeness where
the intermediary can be corrupted. Since this is not the practical case we are
studying, we will not consider it.

We say that a protocol is the cooperative version of another one (called the
standard one) if their outputs are constructed identically. Then, a cooperative
version of a protocol ensures the correctness property if the standard is also
correct in the BSZ model [2].

3.3 Adaptation of the Anonymity

From the anonymity point of view, it is possible to assume that the signer and
the intermediary live in a personal environment. In fact, as the intermediary
can most of the time recognize the signer by some other means, allowing it to
know the user identity does not introduce a threat. In this case, the cooperative
scheme should only verifies the “standard” anonymity property. More precisely,
if the initial group signature scheme provides anonymity (in the BSZ sense),
then a cooperative version necessarily verifies this “weak” anonymity property.
By doing this assumption, it is generally possible to transfer more data to the
intermediary and thus to reduce the signer’s complexity by a better factor.

Definition 2 (Anonymity Property). A cooperative scheme ensures the ano-
nymity property if there exists a negligible function e(\) such that:

‘Pr [A(gmsk) =1 | b=1] — Pr[A(gmsk) =1 | b= 0]‘ < e(N)

for any polynomial adversary A, who have access to (OreateV  ©AddU — HSoin

OUJoin; OCrth7 OReveal’ OSignU’ OOpen and OChooseb.

Remark 2. In some cases, being unlinkable w.r.t. the intermediary is a really
important issue and needs to be studied. For the completeness of the model,
it is consequently possible to provide a stronger definition for the coopera-
tive anonymity property. The adversary is thus additionally given access to the
OPartialSien racle in the above experiment.
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3.4 Adaptation of the Traceability

Concerning the two remaining security properties, it is necessary to give access to
the adversary the OPartialSien(i.m) gracle in the cooperative versions of the related
experiments.

Definition 3 (Traceability Property). The traceability predicate of a group
signature scheme, denoted EG5° is verified for (m, o) if and only if the following

conditions are verified:
VERIF(m,o) = 1A [OPEN(m, o,rsk) = LV
(OPEN(m, o, rsk) = (Upk, 7) A JUDGE(c, m, T, Upk) = L)]

We denote £G55(m, o) = 1 if this predicate is true, and 0 otherwise.
A cooperative scheme ensures the traceability property if there exists a neg-

ligible function e(\) such that for any polynomial adversary A, who have access
CreatelU  ()AddU ~ )SJoi UlJoi CrptU ~ (/)Reveal (SignU (1O PartialSign .
to O reate , O , O om’ O om’ O rpt , (/) evea , O gn , O pen’ O artia gn .

Pr [.A(gmsk) — (m,0): ES95 (m,0) = 1} < €(N).
Note that the traceability predicate is verified even when the user, which
possess Upk, is corrupted, as in the standard security definition [2].

3.5 Adaptation of the Non-frameability

We next study the non-frameability property, for which we introduce a list Set
which contains all valid signatures outputted during the experiment (i.e. realized
by the ©5&"Y oracle).

Definition 4 (Non-Frameability Property). The non-frameability predi-
cate of a group signature scheme, denoted EG5%. | is verified for (m,o) if and

only if the following conditions are verified, where (Upk;, ) = OPEN(m, o, rsk, Tab):
VERIF(m, o) = 1 A (m,o,i) ¢ Set Ni € HU N JUDGE(m, o, T, Upk;, Tab) = 1.

We denote Eﬁosme(m,cr) =1 if this predicate is true, and 0 otherwise.
A cooperative scheme ensures the non-frameability property if there exists

a negligible function €(\) such that for any polynomial adversary A, who have
access to OAddU OCrth OReveal OSignU OOpen OPartialSign:

Pr[A(gmsk, rsk) = (m, @) : £455,,,(m,0) = 1] < e(N).

4 The Cooperative Version of XSGS

Our aim is now to adapt the XSGS protocol [14] (described in Appendix A) in
a secure cooperative manner such that it can be embedded in a RFID tag. For
this reason, we consider that the tag is not anonymous w.r.t. the reader. We
thus describe a cooperative version of the XSGS scheme and prove its security.
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4.1 Protocol Description

To obtain the best possible gain in terms of efficiency, we adapt the XSGS
protocol such that the user will not be anonymous for the intermediary. However,
we will prove that all the other security properties remain. Thus, at the beginning
of a signature protocol, the user transmits its certificate (A4, z), which is part of
its group secret key (see Appendix A for details) to the intermediary which will
performs all the computations related to this certificate. The user keeps secret his
group secret key and computes all values based on it. The obtained cooperative
version of the protocol is described in Figure 1. The efficiency gain from the user’s
point of view is huge as there only remains one point multiplication to compute
instead of one pairing, 13 point multiplications and 2 modular exponentiations
in the DLIN based XSGS protocol. In this section we use notations introduced in
Section 2 and Appendix A. In a nutshell, a group member owns a group secret key
gsk and a certificate (A, z) obtained during the JOIN protocol. The revocation
manager has two couples of key (rskq, Rpky), (rske, Rpksy). The group public key
is denoted GMpk. Finally, (¢, G1,G2,Gr,e,1) is a bilinear environment (see
Appendix A.1) and H denotes a cryptographically secure hash function.

Tz ER Lq u . T
Pl = 72 Roky A, @, P} a1, B1, @2, 82 €R Zq

Ty = a1.G; Ty = 81.G'; T3 = A+ (a1 + B1).Rpky;
Ty = ag.G; T = $2.G/;Tg = A+ (ag + B2).Reka

Tapy TRy Tag Ty Tw €R Zq

Py =rqq,.G; Py = TBI.G’; Pg =ra,.G; Py = rﬁz.G/;

Ps = (raq +rg,)-Reky — (rag + rg, ) -Reka;
Pg = (T3, G3)"® e(Rpky , GMpk) ~ (T2 +Tﬂ2)e(Pé, Ga)
= = (a1 + B1)w;
2= 2 + gk Ze c¢c=H(m, Ty, Ty, T3, Ty, T5, T, P1, Py, P3, Py, P5, Pg)
Sz =1z t+cz Sz

Sap = Tap + ¢ (mod q);slal =rg; T b1 (mod gq);
sag = Tag +c.ag (mod q)isg, = rg, +c.fy (mod @);

sg = rg + c.x (mod q)

U=(c,8a1,88)5ag: 58,55z, 5z2)

o= (U,T1, T2, T3, Ty, Ts5,Tg)

Fig. 1. Sign procedure of the cooperative XSGS Protocol.

4.2 Security Analysis

Intuitively, the transmission of the certificate does not introduce any security
flaw since both Traceability and Non-Frameability assume that even the
group manager cannot break these properties. As this entity knows all users’
certificates, it should be also hard for an active adversary to break them. Nev-
ertheless we will formally prove these results. Note that our proof are in the
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random oracle model as in the original paper [14]. First of all, we prove that
our cooperative protocol perfectly realizes a XS group signature, and thus that
it verifies the correctness property.

Theorem 1. The Coop-XSGS protocol ensures the Correctness property.

Proof. Recall that for this property we assume that the intermediary has a
honest behaviour and executes perfectly his part of the protocol. We remark
that only the signature of knowledge U slightly deviates from the standard one
and we need to verify its correctness. More precisely, the deviation is on the P
value. Based on the pairing property (see Section A.1) it is obvious that:

Py = ¢(Ts, G2)"* e(Rpky, GMpk) "1 #71)e(P§, Gy)
= ¢(Ts,G2) = e(Rpk,, GMpk) ™ (a1 t781) ¢ (Rpk, G5)"=

Thus, the whole group signature is computed identically as in the standard
protocol. Consequently, the cooperative protocol is correct. O

Theorem 2. The Coop-XSGS protocol ensures the Anonymity property.

Proof. As explained in Section 3.3 and since the scheme ensures correctness, the
proposed cooperative scheme ensures the anonymity. a

Theorem 3. The Coop-XSGS protocol ensures the Traceability property.

Proof. This proof is obvious since the adversary has no more information than
the adversary in the standard model. Indeed, this property is verified even when
the adversary represents a collusion of members (thus knowing their group se-
cret keys and certificates). Thus, the cooperative version of the XSGS protocol
trivially verifies the traceability property. ad

Theorem 4. The Coop-XSGS protocol ensures the Non-Frameabilty property.

Proof. In the original proof (see proof of Theorem 11 in [14]), the authors use the
“unforgeability techniques” to retrieve the certificate and the group secret key
used in a signature outputted by an adversary. Thus, they build an algorithm
which interacts with this adversary in order to break the discrete logarithm
either in Gy or in Go (depending of the retrieved group secret key). This proof
only works if the adversary does not know the group secret key of the targeted
user. As the JOIN procedure does not leak any information about it, their proof
is correct. For the cooperative protocol, this proof can also be applied if we prove
that an active adversary cannot learn any information about this secret key.
For this purpose, we first highlight the fact that the protocol between the
constrained device and the intermediary can be interpreted as a Schnorr proto-
col (see [33] for further details) which has been proven to be a zero-knowledge
proof of knowledge. As a consequence, the values P} and s, do not reveal any
information about gsk. It is next obvious that the intermediary has no informa-
tion about the value r, under the discrete logarithm assumption. Consequently,
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given a fixed value of s,, whatever the value gsk is equal to, there exists one
value 7, such that s, = r, + ((a; + B1)x + gsk)c. As a result, a perfect simula-
tion of (P§, ¢, s,) can be realized as for the zero-knowledge property of Schnorr’s
protocol (see [33]). Then, if 7. is uniformly chosen in Z,, the group secret key
of the user is perfectly hidden in s,. O

Theoretically speaking, this protocol appears to be really efficient. However,
in order to demonstrate this efficiency in practice, we describe in the next section
an implementation of this new cooperative protocol.

5 Implementation of Coop-XSGS in a RFID Tag

To assess the suitability of the cooperative XSGS protocol for small portable
devices, we have implemented it using a wireless sensor node for the prover
and a laptop for the powerful helping entity. Wireless sensor nodes are small au-
tonomous devices equipped with a small microcontroller and a transceiver. In this
work, we studied the performances of the protocol on two representative sensor
node platforms, the MICAz [12] equipped with an 8-bit 7.37MHz ATmegal28L
microprocessor and the TelosB [13], based on the 16-bit 4AMHz MSP430 proces-
sor. These devices are conceptually quite close to contactless smart cards. For
instance, the TT RF360 chip for contactless secure government electronic ID em-
beds the same MSP430 processor as the TelosB node [34]. Therefore, although
we consider an active device, the results of our implementation can easily be
extended to platforms such as contactless smart cards.

The protocol implemented follows the cooperative sign procedure described
in Figure 1. The most costly operation for the prover is the point multiplication
P} = r,.Rpk;. It can be computed prior to the interactions with the intermediary,
either during idle time (in case of an active device) or precomputed and preloaded
on the tag. The latter case corresponds to the coupon mode, as in [20], where
a coupon is a pair of (r,, r,.Rpk;) loaded on the device. In the following, the
operation leading to P} is denoted as the off-line phase, although it might still
be computed on-line in the case of a passive device avoiding coupons.

Concerning the pairing parameters, we chose an asymmetric pairing, as it
allows to use small-length inputs on the tag, reducing therefore the storage and
bandwidth costs. For the elliptic curves on which the pairing is applied, we
selected the so-called type D curves (following the classification of [25]), i.e., the
ordinary curves with embedding degree 3, 4 or 6 known as MNT curves [28]. This
type of curve ensures a small input length (around 170 bits for an embedding
degree 6) together with an efficient pairing computation [25].

The prover computations were coded in TinyOS [35] on both the MICAz
and TelosB sensors. For the point multiplication, we extended the TinyECC
library [24] to support the MNT curves. The parameters of the used curve were
taken from the PBC library [26] written by B. Lynn. They are labeled as the d159
parameters, where 159 is the size of the base field of the curve. Their security
level is equivalent to the hardness of the discrete log problem on 6 - 159 =
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Table 1. Running times of the various phases of the cooperative XSGS protocol. The
on-line phase of the sign procedure takes less than 200 ms.

Phase Detail Time (ms)
Off-line Sign
Prover (MICAz) 3800
Prover (TelosB) 6400
Intermediary 195
On-line Sign
Prover (MICAz) 7
Prover (TelosB) 9
Intermediary 65
Communication 120
Total < 200
Verify - 55
Open - 35

954 bits. Parameters for a higher security could be selected if required. On the
intermediary side, the computations were implemented in C using the GMP [21]
library and the PBC library to achieve the pairings. They took place on a laptop
equipped with a 64-bit 1.4 GHz Intel Core 2 Duo. The pairing computations were
rather fast in this setting: 11 ms were sufficient to perform a Tate pairing.

The running times for the various parts of the sign procedure are given in
Table 1. The on-line phase of the protocol is performed in less than 200 ms with
both sensor nodes. The communication delay and the intermediary computations
are the main components of the on-line phase latency. The time required by the
prover computations, i.e. , the calculation of s,, is marginal (<10 ms).

In the off-line phase, the computation of the point multiplication giving P
lasts about 4 and 6 seconds on the MICAz and TelosB respectively. While rea-
sonably efficient, the TinyECC library, on which our implementation is based,
is however significantly slower than recently proposed ECC implementations on
sensor nodes. We therefore expect the point multiplication to be significantly
faster using the same techniques as for instance the implementation proposed
in [23], which performs a fixed-base point multiplication in less than a second
on a 192-bit elliptic curve group. As a result, even if the prover device has to
compute the point multiplication P§ during the on-line phase, the whole proce-
dure can be done within a few seconds (much less if a dedicated hardware ECC
engine is available on the tag).

The fast on-line phase of the cooperative protocol makes group signatures
of practical interest for small devices like contactless smart cards. By contrast,
signing with the original XSGS protocol would require a much longer interaction
between the passive device and the reader. To give a rough idea, a pairing eval-
utation takes about 5.5 second on the MICAz (with the TinyPBC library [31])
and an ECC point multiplication requires 0.71 second with the implementation
from [23] (there are 13 of these in XSGS): the whole protocol would take on the
order of 15 seconds with the MICAz.
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Table 2. Storage requirements (in bytes) of our implementation on the sensor nodes.
In coupon mode, 21 B must be added per stored coupon.

Mode  Memory MICAz TelosB
Coupon  RAM 1067 (26%) 1071 (10%)
ROM 23764 (18%) 14470 (20%)
No Coupon RAM 1699 (41%) 1739 (17%)
ROM 36576 (28%) 19164 (39%)

The original XSGS protocol would also consume a considerable amount of
memory. On the other hand, the memory usage of the cooperative protocol is
relatively modest (Table 2), even when the ECC point multiplication is per-
formed on the node. The tiny operating system already consumes a significant
fraction of the used memory (about 700 B RAM and a little more than 10 kB
ROM on both nodes). A coupon (., r,.Rpk;) requires normally 60 B, i.e. three
20-B field elements, but it can be reduced to a little more than 20 B using point
compression and a PRNG sequence for storing all the r,, as done in [20]. As
the coupons can be placed in RAM or ROM, their storage in both the MICAz
and TelosB is not a problem. Considering the available memory resources, the
MICAz and the TelosB could be filled with more than 5000 and 2500 coupons
respectively, which is more than practical for many applications.
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A XSGS Group Signature

In this section, we give some useful tools and next focus on the XSGS group
signature scheme, using additive notations.

A.1 Some Notations and Tools

Bilinear Groups. Let G1, Gs and G be multiplicative cyclic groups of prime
order ¢ and let ¢ be an isomorphism from Gz to G1. Gy (resp. G3) is a generator
of G1 (resp. G2). Finally, let e be a computable bilinear map G1 xGy — Gy such
that e(G1,G2) # 1 and for all P, € Gy, P, € G2 and a,b € Z, e(a.P1,0.P3) =
e(Py, P2). (¢,Gy1,Go,Gr,Gy,Ga,e,1) is called a bilinear environment.

Zero-Knowledge Proofs of Knowledge. Roughly speaking, a Zero Knowl-
edge Proof of Knowledge (ZKPK) is an interactive protocol during which an
entity P proves to a verifier V that he knows a set of secret values oy, ..., qy
verifying a given relation R without revealing anything else. These protocols
are also used to prove that some public values are well-formed from secret val-
ues known by the prover. It is possible to transform these protocol into non-
interactive proof of knowledge, generally called signature of knowledge, using
the Fiat-Shamir heuristic [16].

In the sequel, we denote by SOK(as,...,aq : R(ai,...,aq)) a signature of
knowledge of the secrets a1, ..., a4 verifying the relation R. We also define 7 as
the interactive protocol between a prover P, on input aq,...,a, and R and a

verifier V on input R and which allows P to prove that she knows the secrets in
a zero-knowledge manner. The output of V is either 1 if the prover is accepted
and 0 otherwise.

Appeared in K. H. Rhee and D. Nyang (Eds.): ICISC 2010, volume 6829 of LNCS, pp.
133-150, 2010.
(© Springer-Verlag Berlin Heidelberg 2010



A.2 Decision Linear Problem and Encryption
The Decision Linear Problem has been introduced in [3] and is defined as follows.

Definition 5. Given G,G',H,a.G,3.G',~.H € G as input, the Decision Linear
Problem consists to decide if v = o+ 3 or not.

A great advantage of this problem is that it is still a hard problem even
in bilinear groups where the DDH problem is easy. Based on this problem, the
authors of [3] introduced a new encryption scheme called Linear Encryption:

— GENPARAM(1?): let G be a group of prime order g. Select three generators
G,G’ and Rpk such that there exists rsky,rsky € Z, which verify Rpk =
rsk1.G = rsko.G’. The public-key of the system is the tuple (G,G’, Rpk)
while the secret key is (rskq, rska).

— ENc(m): to encrypt the message m € G, this algorithm selects two random
values «, 8 € Z, and computes 71 = a.G,T> = 5.G',T5 = m + (a + B)Rpk.
The encrypted message is (11, 15, T3).

— DEC(T1,T5,T3): to decrypt a message, this algorithm computes m = T5 —
rskl.Tl — I’SkQ.TQ.

To define the parameters of this scheme verifying is Rpk = rsky.G = rska. G,
a solution is described by the next steps:

— choose a random generator G € G;

choose a random value rsk € Z, and compute G’ = rsk.G;
choose a first secret key rsk; €r Z4 and compute Rpk = rsk;.G;
compute rsky = rsky /rsk (mod q).

A.3 The XSGS Group Signature Scheme

We now focus on the XSGS protocol, introduced by Delerablée and Pointcheval
in [14]. For security reasons (see Section 8.1 of the extended version of [3] for more
details), we use the XSGS scheme without the XDH assumption. We thus use the
double linear encryption scheme, introduced by Boneh et al. in [3] and described
in Appendix A.2, instead of a double ElGamal encryption, as suggested in [14].
The group signature scheme is described by the following procedures, where A
is a security parameter.

— GENPARAM(1?): this procedure generates the public parameters of the sys-
tem and also the keys of the different entities as follows:

e a bilinear environment (¢, Gy, G, Gr, e, );

e the parameters for the double linear encryption, i.e. a generator G € g Gy
and another generator G’ = rsk.G where rsk €g Z,.

e the secret keys of the opening judge (rsky,rsks) €r Zg, rsko = rsky /rsk,
rsky = rsks/rsk and the associated public keys Rpk; = rsk;.G = rsko.G’
and Rpk, = rsk3.G = rsky.G';
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o the secret key gmsk €r Z, of the group manager GM and the associated

public key GMpk = gmsk.Ga;

e the parameters of Paillier’s encryption scheme [32] for EXTCOMMIT;
The public parameters of the system are PP = {\, q,G1,Ga,Gr, e, ¥, Gy,
G2, G, G, GMpk, Rpk,, Rpky}.

— USERKEYGEN(1?): before that a user, denoted U;, can join a group, he has
to be registered in a PKI. This procedure permits to ensure the unlinkability
and the non-repudiation of the system. At the end of this procedure, the user
obtain a couple of key (usk;, Upk;). The value Upk; is added in a table UPK
which is supposed public.

— JOIN[U; (usk;, Upk;) <+ GM(UPK, gmsk)]: this interactive protocol between a
user U; and the group manager results by the adhesion of the new user to the
group. Consequently, the user obtain a group certificate cert; = (A;, z;), and
his group secret key gsk;. The group manager add an entry (Upk;, 4;, x;,.5)
in Tab, where S is a signature of A; made by the user U; with his secret key
usk;. This interactive protocol is presented in Figure 2 where EXTCOMMIT is
an extractable commitment done with the Paillier’s encryption scheme [32].

gsk; €R Zq; C = gsk;-Rekp u; oM

c = ExtCommIT(gsk; )
U = SoK(gsk; : C = gsk; .Rpkq A ¢ = ExrCommiIT(gsk;)) U Checks U et C € Gq;

T; €ER Lq;
o 1 .

Ai =G+ gakra; C

B := e(Gy + C, Gg)/e(A;, GMpk);

D :=e(A;, Ga);

A,V —s B .
B := e(G1C, Go)/e(A;, GMpk); i V = SoK(a : B = a.D);
D :=e(A;, Ga);
Checks V et A; € Gy;
§ = Pasion(usi, 40) = VERIF(S, Upk; , A;)
) » Upkg, Aj
g Adds(Upk;, A;, z;, S) in Tab

Checks if (z; + gmsk).A; = G + gsk; .Rpky with:
e(A;, Go)%ie(A;, GMpk)e(Rpky, Go) “8Ki = e(G1, Gg)

Fig. 2. XSGS JOIN protocol

— S1aN(m, gsk;, cert;): the signature of m is composed of two steps
e a double linear encryption, namely, the user randomly chooses (a1, S,

a, B2) €r Z4 and computes the fours values
Ty = a1.G; To=p1.G"; Ts = A+ (a1 + B1)Rpky;
T4 = OéQ.G; T5 = ﬁQ.GI; TG =A + (O[Q + ﬁQ)Rpkz;
e a signature of knowledge U, where z = (ay + f1).x + gsk;:

U= SOK(al,ﬂl,ag,,@2,x,z : T1 = O[l.G/\T2 = ﬂl.G, /\T4 = O[Q.G

N5 = B2.G' NT3 — T = (a1 + B1)Rpk; — (a2 + B2)Rpky A
E(Gl,GQ)

Ty, Ga)"e(Rpky, GMpk) (1) ¢(Rpk,, Go) ™% = ——— 22222 ) (m).
6( 37G2) 6( p 17G p ) 6( P 1’G2) e(T?))GMpk))(m)
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The user outputs the signature o = (T, T, T3, Ty, T5, 15, U).

— VERIF(m, o) this procedure simply verifies the correctness of the signature
of knowledge U, as detailed in Section A.4.

— OPEN(m, o, (rskq, rska, rsks, rsky), Tab) if o is valid, the opening judge com-
putes A = T5 — (rsky. Ty + rsko.T2) and realizes the signature of knowledge
T = SOK(rskl, rsko : A = T3 — (rsky. T} + rsko.T5) A Rpk; = rski.G A Rpky =
rskg.G’). By using Tab, the judge can retrieve the key Upk; associated to the
user certificate A. Then he outputs Upk, S(= PKISIGN,(A4)), A and 7.

— JUDGE(m, o, A, T, Upk, Tab) this procedure verifies the correctness of the sig-
nature of knowledge 7. The signature S, stored in Tab, permits to check
that the certificate A is the one which have been given to the user during
the JOIN procedure. If both signatures (7 and S) are valid, the procedure
outputs 1 else it outputs 0.

This protocol ensures all the security requirements of a group signature
scheme under the ¢-SDH [4] and the decision linear assumption (see Section A.2).
We refer the interested reader to [14] and [3] for the security aspects of this
scheme.

A.4 Focus on the Signature of Knowledge

During the signature of a message, a user must produce the signature of knowl-
edge U. We detailed here how this should be done.

— Choose Ta,, 78, TassT8s €ER Lp; T2, T2 ER Ly
— Compute

Py =ro,.G; Py =13,.G'; Py = rq,.G; Py = 13,.G";
Ps = (Tal + rﬁl)Rpkl - (roéz + Tﬂz)Rpk2;
P = e(Ts,Ga)™ e(Rpk,, GMpk) "1 +751)¢(Rpk,, G) "

ComPUte c= H(m7T1aT25 T37T4aT5a T67P1; P27 P37 P4>P5; PG)
Compute

Say = Tay +C01 (mOd (]); Sp =Tp + . (mOd CI);
Say =Ta, +c.aa  (mod q);sp, =78, +¢c.f2 (mod q);
Sy =Tz +CT (mOd Q)a Sy =Tz +cz (mOd Q)

The signature is the tuple U = (¢, Sa,, 81, Sass S8y Szs Sz)-

The verification of this signature of knowledge is done as follow. The verifier
first computes:

- P1 = Sal.G—C.Tl, P2 = 551.G’—C.T2, P3 = SOQ.G—C.T4, P4 = Sﬁz.G/—C.Tg,
and Ps = (S, + 55, )Rpk; — (Say + 58, )Rpky — c.(T5 — T§)

— Py = e(Ty, Ga2)*e(Rok;, GMpK) ~ (151 e(Rpk;, G2) = (42 )

Finally the verifier validates the signature of knowledge if:

c=H(m,T1,T>,T5,Ts,T5,Ts, Py, P>, P3, Py, Ps, Ps).
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