
Non-randomness in eSTREAM Candidates
Salsa20 and TSC-4

Simon Fischer1, Willi Meier1,
Côme Berbain2, Jean-François Biasse2, and M.J.B. Robshaw2

1 FHNW, 5210 Windisch, Switzerland
{simon.fischer,willi.meier}@fhnw.ch

2 FTRD, 38–40 rue du Général Leclerc, 92794 Issy les Moulineaux, France
{come.berbain,jeanfrancois.biasse,matt.robshaw}@orange-ft.com

Abstract. Stream cipher initialisation should ensure that the initial
state or keystream is not detectably related to the key and initialisa-
tion vector. In this paper we analyse the key/IV setup of the eSTREAM
Phase 2 candidates Salsa20 and TSC-4. In the case of Salsa20 we demon-
strate a key recovery attack on six rounds and observe non-randomness
after seven. For TSC-4, non-randomness over the full eight-round initial-
isation phase is detected, but would also persist for more rounds.

Key words: Stream Cipher, eSTREAM, Salsa20, TSC-4, Chosen IV
Attack

1 Introduction

Many synchronous stream ciphers use two inputs for keystream generation; a
secret key K and a non-secret initialisation vector IV . The IV allows different
keystreams to be derived from a single secret key and facilitates resynchroniza-
tion. In the general model of a synchronous stream cipher there are three func-
tions. During initialisation a function F maps the input pair (K, IV ) to a secret
initial state X. The state of the cipher then evolves at time t under the action
of a function f that updates the state X according to Xt+1 = f(Xt). Keystream
is generated using an output function g to give a block of keystream zt = g(Xt).
While TSC-4 follows this model, Salsa20 has no state update function f and g
involves reading out the state X. Instead, we view the IV to Salsa20 as being the
combination of a 64-bit nonce and a 64-bit counter and keystream is generated
by repeatedly computing F(K, IV ) for an incremented counter.

In the analysis of keystream generators (i.e. in the analysis of f and g) it is
typical to assume that the initial state X is random. Hence for a stream cipher
we require that F has suitable randomness properties, and in particular, that it
has good diffusion with regards to both IV and K. (Clearly this applies equally
to the case when the output of F is the keystream.) Indeed, if diffusion of the IV
is not complete then there may well be statistical or algebraic dependences in the
keystreams for different IV’s, as chosen-IV attacks on numerous stream ciphers
demonstrate (e.g., [6, 8, 9]). Good mixing of the secret key is similarly required

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



and there should not be any identifiable subsets of keys that have a traceable
influence on the initial state (or on the generated keystream), see [7]. Since,
in many cases, F is constructed from the repeated application of a relatively
simple function over r rounds, determining the required number of rounds r can
be difficult. For a well-designed scheme, we would expect the security of the
mechanism to increase with r, though there is a clear cost in reduced efficiency.

In this paper we investigate the initialisation of Salsa20 and TSC-4. We con-
sider a set of well-chosen inputs (K, IV ) and compute the outputs F(K, IV ).
Under an appropriate measure we aim to detect non-random behaviour in the
output. Throughout we assume that the IV’s can be chosen and that most, or
all, of the key bits are unknown. The paper is organized as follows. The specifi-
cation of Salsa20 is recalled in Section 2 with an analysis up to seven rounds in
Section 3. TSC-4 is described in Section 4 with analysis in Section 5. We draw
our conclusions in Section 6. For notation we use + for addition modulo 232, ⊕
for bitwise XOR, ∧ for bitwise AND, ≪ for bitwise left-rotation, and� for bitwise
left-shift. The most (least) significant bit will be denoted msb (lsb).

2 Description of Salsa20

A full description of Salsa20 can be found in [1]. As mentioned in the intro-
duction, we view the initialisation vector as IV = (v0, v1, i0, i1) where (v0, v1)
denotes the nonce and (i0, i1) the counter. Throughout we consider the 256-bit
key version of Salsa20 and we denote the key by K = (k0, . . . , k7) and four con-
stants by c0, . . ., c3 (see [1]). We denote the cipher state by X = (x0, . . . , x15)
where each xi is a 32-bit word.

X =


x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 where X0 =


c0 k0 k1 k2

k3 c1 v0 v1
i0 i1 c2 k4

k5 k6 k7 c3

 .

At each application of the initialisation process F(K, IV ) 512 bits of keystream
are generated by using the entirety of the final state as the keystream. The
computation F is built around the quarterround function illustrated in Fig. 1
with quarterround(y0, y1, y2, y3) = (z0, z1, z2, z3).

The operation columnround function updates all 16 words of the state X
and can be described as follows. Each column i, 0 ≤ i ≤ 3, is rotated upwards
by i array positions. Each column is then used independently as input to the
quarterround function. The resulting set of four columns, 0 ≤ i ≤ 3, are then
rotated down by i array positions. The operation rowround can be viewed as being
identical to the columnround operation except that the state array is transposed
both before and after using the columnround operation. Salsa20 updates the
internal state by using columnround and rowround one after the other. After r
rounds, the state is denoted Xr and the keystream given by z = X0 +Xr using
wordwise addition modulo 232. The original version of Salsa20 has r = 20, i.e. 10
rounds of columnround interleaved with 10 rounds of rowround, though shorter
versions with r = 8 and r = 12 have been proposed [2].

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



y0

y1

y2

y3

- -

- -

- -

- -

z0

z1

z2

z3

q

q

6

?- j≪ 7

j
6 q

q - j≪ 9

j
6

- 6 q
q - j≪13

j
6

- 6 q
q

- j≪18j??-

Fig. 1. The quarterround function of Salsa20.

3 Analysis of Salsa20

In this section we will demonstrate two related instances of non-random be-
haviour. These are detectable over six and seven rounds of Salsa20 respectively.
Depending on the attack model this also permits key recovery. To start, we il-
lustrate our approach by building on the earlier work of Crowley [5] and we
describe a framework that allows a more sophisticated analysis to take place.
This is achieved in two steps. First, we identify interesting differential effects
in a simplified version of Salsa20. Second, we identify key and IV choices that
allow us to ensure that the behaviour of the genuine Salsa20 is reasonably well-
approximated by the simplified version. This technique allows us to make a
systematic research of possible input differences ID’s and consequently to find
ID’s with optimal properties.

As mentioned, our observations are differential in nature. We will work with
two copies of the state where X0 is filled with the input (K, IV ) and a second
state Y 0 is initialized according to Y 0 = X0 ⊕ ∆0 where ∆0 = (∆0

0, . . . ,∆
0
15)

is the ID. Note that the specifications of Salsa20 require that any ID must be
zero in the diagonal words ∆0

0, ∆0
5, ∆0

10, and ∆0
15. After r rounds of Salsa20 the

output difference OD is given3 by ∆r = Xr ⊕ Y r.

3.1 A Linearised Version of Salsa20

In previous work, Crowley [5] identified a truncated differential over three rounds
of Salsa20. Consider setting ∆0

i = 0 for i 6= 9 and ∆0
9 = 0x80000000. Then the

following truncated differential for the first three rounds holds with a theoretical
probability 2−12. In practice a variety of effects conspire to give an average
probability of 2−9.

3 Note that due to the feedforward in Salsa20 that uses addition modulo 232 this is
not necessarily the same as the difference in the corresponding keystream.

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006




0 0 0 0
0 0 0 0
0 0x80000000 0 0
0 0 0 0


col
row
col−→


? ? ? 0x02002802
? ? ? ?
? ? ? ?
? ? ? ?


Given the behaviour exhibited in x3

3⊕ y3
3 it is tempting to look for some impact

in the next round. Yet, it is not clear how to proceed in a methodical manner.
To establish an appropriate framework for analysis, we introduce an alter-

native algorithm LinSalsa20. This is identical to Salsa20 except that all integer
additions have been replaced by exclusive-or. The corresponding round functions
are denoted LinColumnround and LinRowround. Assume that two initial states X0

and Y 0 = X0⊕∆0 are iterated by LinSalsa20. Then since LinSalsa20 is completely
linear in GF(2), the difference ∆r = Xr ⊕ Y r coincides exactly with computing
r iterations of ∆0 with LinSalsa20. This computation does not require knowledge
of the key and we refer to a differential path generated by LinSalsa20 as a linear
differential. It is straightforward to see that there are many (admissible) input
differences for which the output of LinSalsa20 is trivially non-random.

Proposition 1. Consider an input ∆0
i ∈ {0xFFFFFFFF, 0x00000000} for all

words i = 0, . . ., 15. Then, for any number of updates with LinSalsa20, one has
∆r
i ∈ {0xFFFFFFFF, 0x00000000}.

However we need to be more careful. While LinSalsa20 allows some straight-
forward analysis, the further the behaviour of LinSalsa20 is from the true Salsa20,
the less useful it will be. Since a differential of large Hamming weight is likely
to induce carries and hence non-linear behaviour to the genuine Salsa20, we will
need a linear differential of low Hamming weight. Such a differential is intended
to offer a reasonably good approximation to the same differential in genuine
Salsa20. We will consider a linear differential to be of low weight if any compu-
tation involving active words in the difference only uses words of low Hamming
weight (� 16). Let us consider Crowley’s differential within this linear model.

Example 1. Consider an input difference with ∆0
9 = 0x80000000 as the one

non-zero word. The weight of differences for the first four rounds is as follows.
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 col−→


0 2 0 0
0 3 0 0
0 1 0 0
0 1 0 0

 row−→


4 2 2 2
7 10 3 6
1 3 4 1
0 1 1 2

 col−→


9 19 6 5
3 13 5 5
4 11 11 7
1 16 2 10


row−→


13 13 14 10
13 13 13 19
16 18 19 11
11 17 20 15


The top line of this differential is as far as Crowley goes, but when using
LinSalsa20 it appears we can go one round further. Indeed, one can identify

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



a low-weight linear differential for word x4
12, among others. Note that x12 is a

right-to-diagonal word (with wrap) and is updated first in round four; the 16 in
x3

13 has no effect on x4
12. ut

The linear model can also be used to find longer differentials. A well-chosen
multi-bit input may cause smaller diffusion than a single-bit input; non-zero bits
can be placed in positions where they are annihilated in the update process.
To illustrate, we focus again on a single column where the weight of the input
(starting with the diagonal element) is (0, 2, 1, 1). With a fixed relative position
of the non-zero bits in this input, one can obtain an output after the first round
of the form (0, 1, 0, 0). The absolute position of the non-zero bits and the choice
of column are free parameters and naturally leads to an identified sub-class of
inputs. These all have the same properties in LinSalsa20.

Example 2. Consider an input difference with non-zero words∆0
2 = 0x00000100,

∆0
6 = 0x00001000, and ∆0

14 = 0x80080000.
0 0 1 0
0 0 1 0
0 0 0 0
0 0 2 0

 col−→


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 row−→


0 0 0 0
0 0 0 0
0 0 0 0
1 1 3 4

 col−→


4 1 3 4
1 2 4 8
1 0 7 10
3 1 3 14


row−→


13 1 6 7
11 14 5 7
7 4 14 5
14 21 18 17

 col−→


13 16 17 17
6 16 19 23

14 13 18 15
18 16 15 15


One can identify a truncated low-weight linear differential for x5

9 which is an
out-of-diagonal word. Note that some words in the final array may have a lower
Hamming weight, but their generation required computations using average-
weighted words and so they are unlikely to be relevant to genuine Salsa20. ut

3.2 Differentials in True Salsa20

In Section 3.1 we identified classes of inputs (with a required ID) which gave
low-weight truncated linear differentials after four and five rounds of LinSalsa20.
For genuine (nonlinear) Salsa20, the same differentials might not behave in the
same way and a differential trail will depend on the input. Therefore to find
optimal ID’s and inputs we will need to consider which conditions allow the
non-linear differential trail to be closely approximated by the linear differential.

The only non-linear operation in Salsa20 is integer addition in the quar-
terround function, denoted xa + xb. Given an ID (∆a, ∆b), the nonlinear OD
corresponds to the XOR of xa+xb and (xa⊕∆a)+(xb⊕∆b). Thus, the nonlinear
OD is identical to the linear OD, if

(xa + xb)⊕ ((xa ⊕∆a) + (xb ⊕∆b)) = ∆a ⊕∆b . (1)

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



Each non-zero bit in∆a and∆b may cause integer addition to create or annihilate
a sequence of carry bits. Hence we focus on low-weight trails to keep more control
of such events. Note that a difference in the most significant bit is always linear.

In the following sections, we will be indirectly considering Eq. 1 when placing
conditions on the inputs so that a differential in Salsa20 follows a linear differ-
ential in LinSalsa20 for some steps before diverging. Such conditions might be
on the nonce, on the counter (conditions which can be satisfied by sampling a
keystream in the appropriate way), or on the key (thereby establishing classes
of weak keys). While many of these issues are complex, for instance, conditions
aimed at linearising the ID must not conflict with the way the counter is likely
to be incremented, some results are given in the subsequent sections.

3.3 Non-randomness in Four and Five Rounds of Salsa20

Consider the linear differential of Ex. 1 and set ID to be identical to that of [5].
By using LinSalsa20 we suspect a statistical imbalance in x4

12 ⊕ y4
12. Given a set

of N different pairs of (K, IV ), where each pair takes the same fixed ID, the
distribution of the output difference for the N pairs can be analysed. However,
we might consider a subset of the bits or even a single bit, and by examining
each bit in x4

12⊕y4
12 one finds that bit 26 is heavily unbalanced4. This imbalance

can be detected using a χ2 test (see Appendix A) where a χ2 score greater than
some threshold is good evidence of non-randomness.

The behaviour of the differential is heavily key-dependent. The presence or
absence of carries, on which Salsa20 relies, depends on the actual values of the
operands. Thus some keys will dampen, and others amplify, the evolution of a
differential. The imbalance in bit 26 is greater the closer Salsa20 is to LinSalsa20.
A close inspection of the first round of the differential reveals that the first two
additions, differentially speaking, act as XOR while the third does not. However,
depending on how i1 is incremented, we can establish conditions on the key
to ensure that it does. Thus there are keys for which the imbalance in bit 26 is
boosted. We refer to this as partially linearising the first round of the differential5

and key conditions that achieve this are presented in Appendix B.

Example 3. Take N inputs (K, IV ) where IV = (v0, v1, i0, i1). The key K and
nonce (v0, v1) are chosen at random though in the second experiment some bits
of k0 and k6 are adapted. The counter (i0, i1) starts at zero and we sample the
keystream so that the counter i0 increments from 0 to N −1. For each input, we
use values of i1 to generate an associate input with ID ∆0

9 = 0x80000000 (and
zero otherwise). Compute the OD after four rounds of Salsa20 and evaluate the
χ2 statistic on bit 26 of ∆4

12. In a χ2 test on a single bit with threshold T = 40,
the probability a uniform random source gives χ2 > 40 is around 2−32, thus the
probability of false alarm is 2−32. For 100 experiments using random keys and
nonces, the results are listed in Tab. 1. ut

4 In fact there are many unbalanced bits in the state of Salsa20 after four rounds.
5 A more sophisticated set of conditions can be derived to linearise the entirety of the

first round. However for clarity we restrict ourselves to the simpler case.

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



Table 1. Non-randomness in four rounds of Salsa20.

All Keys and Nonces Weak Key Class

N average χ2 value % values > 40 average χ2 value % values > 40

212 33 20 51 34
214 123 41 192 46
216 315 46 656 68

Next we consider five rounds of Salsa20 and we use the differential of Ex. 2.
The non-zero bits are located in column two. Word x14 is updated first by
x1

14 = x0
14 ⊕ (x0

10 + x0
6)≪7. A second state y0

i = x0
i ⊕∆0

i is updated in the same
way and, according to Eq. 1, the difference of this first update will follow the
linear differential if

(x0
10 + x0

6)⊕
(
(x0

10 ⊕∆0
10) + (x0

6 ⊕∆0
6)
)

= ∆0
10 ⊕∆0

6 . (2)

Notice that ∆0
10 is zero and that ∆0

6 has a single non-zero bit in position 12.
Further, x0

10 = c2 and x0
6 = v0. Bits 12 . . . 9 of c2 are defined as (. . . 0110 . . .)2.

Consequently, if bits 11 . . . 9 of v0 are chosen as (. . . 000 . . .)2, then no carry is
produced from the right, and Eq. 1 is satisfied. Subsequently x2 is updated and
so provided the previous update followed the linear differential, the only non-
zero bit in the difference will be in bit 31 and the linear trial will be followed.
Updating x6 is similar while updating x11 only involves zero differences.

Thus we have identified conditions on three bits of v0, part of the nonce, so
that the first round of genuine Salsa20 with the ID of Ex. 2 follows the linear
trail. In fact, the ID of Ex. 2 turns out to be optimal, i.e. it seems to have
minimum weight after two rounds of Salsa20; bitwise rotations of ID reduce
the number of msb’s while shifting the difference to another column shifts the
input-condition to a key word instead of v0. Without input conditions on v0, the
first round would follow the linear trail with a probability of about Pr = 0.175.

Example 4. Take N inputs (K, IV ) where IV = (v0, v1, i0, i1). The key K and
nonce (v0, v1) are chosen at random though in the second experiment bits 9–11
of v0 are zero. The counter (i0, i1) starts at zero and we sample the keystream
so that the counter i0 increments from 0 to N − 1. For each input, we use
values of k1, v0, k7 to generate an associate input with ID ∆0

2 = 0x00000100,
∆0

6 = 0x00001000, ∆0
14 = 0x80080000 (and zero otherwise). Compute the OD

after five rounds of Salsa20 and evaluate the χ2 statistic on bit 1 of ∆5
9. In a χ2

test on a single bit with threshold T = 40, the probability a uniform random
source gives χ2 > 40 is around 2−32. For 100 experiments using random keys
and nonces, the results are listed in Tab. 2. ut

3.4 Non-randomness in Six and Seven Rounds of Salsa20

The results presented in Section 3.3 give statistical weaknesses, as measured by
the χ2 test on a single bit, over four rounds and five rounds of Salsa20. To create

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



Table 2. Non-randomness in five rounds of Salsa20.

All Keys and Nonces Weak Nonce Class

N average χ2 value % values > 40 average χ2 value % values > 40

220 5 4 27 26
222 16 11 105 73
224 78 17 383 89

these biased distributions, we used ID’s of slightly different types. For the four
round imbalance we use a non-zero difference in the counter values while for the
five round imbalance we use non-zero differences in part of the key k1 and k7. We
will comment on this later since it has an impact on the attacks we can mount.

Both statistical anomalies can be detected two rounds later. In both cases we
intercept the required keystream and we guess the necessary key words to unwind
the last two rounds of state update. Thus, for a single guess of the relevant words
of key, the backwards computation is carried out over two rounds for N pairs
of output, where each output was generated using the chosen input difference.
The χ2 statistic of the target bit of the target word is evaluated, and a χ2 test
with some threshold T applied. Our analysis tells us that a correct key guess
will yield a significant χ2 score. We assume that an incorrect key guess results
in essentially random candidate values for the bit we test. Thus, a significantly
large χ2 value suggests that the key guess may be correct. The remaining key
words can be searched exhaustively and the entire key guess verified against the
keystream. If the χ2 value for a key guess is not significant we move on to a new
guess. The target word and bit as well as the key words to guess are given in
Tab. 3.

Table 3. Key words to guess to partially unwind the last two rounds.

Differential Word Bit # Rounds Key Words to Guess

Example 3 ∆4
12 26 Salsa20/6 k3 k4 k5 k6 k7

Example 4 ∆5
9 1 Salsa20/7 k0 k2 k3 k4 k5 k6

Clearly, the scale of the imbalance in the target bit is important to the success
of this method. The closer Salsa20 behaves to LinSalsa20 then the greater the
imbalance in the target bit, and the greater the χ2 score we expect to observe.
This helps an attacker in two ways:

1. If certain keys and IV’s give a high χ2 score, then a greater proportion of
the keys from an identified set should be susceptible to attack.

2. Higher χ2 scores permit less keystream or greater precision in an attack.

To begin to get a picture of how things might behave in practice, we have
implemented a restricted version of this style of attack. In principle we could use

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



the four round differential of Ex. 3 to attack six rounds of Salsa20. To keep the
experiments tractable, however, we use the same differential to attack a restricted
five-round version as a demonstration (i.e. we unwind one round only).

Example 5. We recover nine bits (bits 4 to 12) of k3 under the assumption that
k5 has been correctly guessed. Over 100 random keys and nonces and N pairs,
we give the success rate when assuming the correct key lies among the candidate
values giving the three highest χ2 values. We repeat the experiment for the weak
key class identified in Ex. 3. For the weak key class we observe that the same
proportion of keys can be recovered when using one quarter of the text, see
Tab. 4. We recall that the weak keys only improve the differential propagation
and that our attack is also working for other keys. ut

Table 4. Demonstration of a key recovery attack on five rounds of Salsa20.

All Keys and Nonces Weak Key Class

N % success rate % success rate

212 20 28
214 29 41
216 44 54

As demonstrated in Ex. 5, at least in principle, our observations can be used
in the way we intend. In the case of Salsa20/6 we estimate the work effort for
a key-recovery attack to be around 2177 operations using 216 pairs of keystream
blocks sampled appropriately from the same keystream6. This is a crude esti-
mate. Since such an attack requires guessing more key bits, more text may well
be required. However, since the entirety of the target word can be recovered
for any single key guess, using a single bit to test a key will miss much of the
information available. Thus, it seems prudent to anticipate a final complexity
close to these initial estimates. Under a related-key attack Salsa20/7 might be
broken in around 2217 operations using 224 pairs of keystream blocks taken from
two sets of keystream. However, the practical validity of such an attack is de-
batable [3], so we merely observe that over seven of the 20 rounds in Salsa20,
statistical imbalances can be detected.

4 Description of TSC-4

The stream cipher TSC-4 is specified in [12]. It consists of two states X and
Y of 4 × 32 bits each, denoted X = (x0, x1, x2, x3)T and Y = (y0, y1, y2, y3)T .
Let [x]i denote bit i of a single 32 bit word x, then a bit-slice i of state X is

6 We note in passing that we can recover the key for the 128-bit version of Salsa20/5
in 281 operations using 216 pairs of keystream blocks.

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



defined as ([x3]i, [x2]i, [x1]i, [x0]i). We first describe the regular update function f,
which updates the two states X and Y independently by single-cycle T-functions.
In the case of state X, a 32-bit parameter αX is computed as a function of
X. It is defined by αX = p ⊕ (p + cX) ⊕ s with p = x0 ∧ x1 ∧ x2 ∧ x3 and
s = (x0 +x1 +x2 +x3)� 1 and constant cX = 0x51291089. If [αX ]i = 1, then a
fixed S-box S is applied to bit-slice i of X, and if [αX ]i = 0, then a fixed S-box
S6 is applied to bit-slice i of x (for all i = 0, . . . , 31). The state Y is similarly
updated where parameter αY has constant cY = 0x12910895. Notice that the
least significant bit-slice is always mapped by S. The S-boxes are defined as

S = {9, 2, 11, 15, 3, 0, 14, 4, 10, 13, 12, 5, 6, 8, 7, 1}
S6 = {6, 13, 8, 0, 5, 12, 1, 11, 4, 14, 3, 10, 15, 7, 2, 9} .

The output function g produces a keystream byte z by combining some bytes
of both states (using integer addition, XOR, shift and rotation), see [12] for more
details.

Consider the initialisation function F of TSC-4. To start, the internal state
of 256 bits is loaded with K = (k0, . . . , k9) and IV = (i0, . . . , i9) each of 10× 8
bits (a single 32-bit word is denoted as a concatenation of four 8-bit words).

X =


x0

x1

x2

x3

 =


k3 k2 k1 k0

k7 k6 k5 k4

i3 i2 i1 i0
i7 i6 i5 i4

 , Y =


y0
y1
y2
y3

 =


i1 i0 i9 i8
i5 i4 i3 i2
k1 k0 k9 k8

k5 k4 k3 k2


A single round of the initialisation function (denoted as a warm-up update)
consists of a regular update and some additional operations: A byte z = g(X) is
produced, x1 and y0 are rotated to the left by eight positions, and then byte z
is XOR-ed to the 8 least significant bits of x1 and y0. The specifications of TSC-4
propose r = 8 rounds.

5 Analysis of TSC-4

In [10,11], predecessors of TSC-4 have been attacked by exploiting a bit-flip bias
for multiple applications of the state update function f. This bias still exists
for regular updates of TSC-4, but the strong filter function g prevents from an
attack. In this section, we disregard the details of the filter function and investi-
gate the statistical properties of multiple warm-up updates of TSC-4: While the
regular updates have some guaranteed properties, the warm-up updates use ad-
ditional ad hoc operations that are designed to accelerate diffusion. Notice that
our analysis is embedded in a more general context: we actually consider the
initialisation function F of TSC-4 and try to detect some non-random behaviour
in a set of outputs (i.e. in the TSC-4 initial states) that are produced by a set
of well-chosen inputs (i.e. in the IV’s).

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



5.1 Statistical Model of Initialisation

We investigate the statistical properties of the initialisation process. In our simple
statistical model, we assume that α (with exception of the lsb) and the feedback
z are uniformly randomly. Consider a single bit-slice i (not the least significant
one) in the state X, then our assumptions imply for each round:

1. Bit-slice i is mapped uniformly randomly by S or by S6.
2. After application of the S-box, bit 1 of bit-slice i is chosen uniformly ran-

domly.

With a fixed input w ∈ {0, . . . , 15}, these two steps are repeated for r rounds, so
we can analyse the distribution of the output v ∈ {0, . . . , 15}. Within this model,
the distribution can be computed exactly in 22r steps. The other cases (i.e. the
least-significant bit-slice and the state Y ) are treated similarly. The bias of the
distribution is measured with the Euclidean Squared Distance ε2 :=

∑
ε2v with

εv := Pr(v)−1/16, where Pr(v) denotes the probability for output v (given some
fixed parameters). In Tab. 5, the bias ε2 is shown for different parameters. To
simplify the presentation we compute ε2 for all inputs w and show the average
values only.

Table 5. Average bias ε2 in the statistical model for r = 6, . . . , 12 rounds, and for
different bit-slices.

lsb in X lsb in Y non-lsb in X non-lsb in Y

r = 6 7.1× 10−3 4.2× 10−3 7.7× 10−5 1.8× 10−5

r = 8 9.7× 10−4 2.1× 10−4 4.5× 10−6 4.6× 10−7

r = 10 1.3× 10−4 7.6× 10−6 2.1× 10−7 9.8× 10−9

r = 12 2.3× 10−5 1.0× 10−6 5.5× 10−9 2.1× 10−10

As expected, the average bias is decreasing with the number of rounds r. In
the case of the least-significant bit-slice in the state X, it is reduced by a factor of
about 2.6 with each additional round. Interestingly, the position of the random
bit (step 2) has a notable influence on the distribution and diffusion is better for
state Y . And, as expected, diffusion is better for bit-slices which are not on the
least-significant position (intuitively a combination of S and S6 results in larger
diffusion than using S only).

5.2 Experimental Results

Now we attempt to detect the bias of the previous subsection in the genuine
initialisation function F(K, IV ) of TSC-4. We need N different inputs (K, IV )
where the value of a fixed bit-slice i is the same for all inputs. Each bit-slice
consists of two key bits and two IV bits. Consequently, bit-slice i is the same for
all inputs, if the key is fixed (and unknown), and if the IV bits of bit-slice i are

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



fixed (though the other IV bits can be varied). The N outputs can then be used
to evaluate a χ2 statistic on bit-slice i. Provided that the assumptions on the
model of the previous section are valid, bit-slice i = 0 of the state X is expected
to have maximum bias. Here is an example for r = 8 rounds.

Example 6. Take N different inputs (K, IV ) where IV = (i0, . . . , i9). The key
is fixed, IV bytes i0, i1 . . . , i7 are zero, and i8, i9 increments from 0 to N − 1.
Compute all N outputs after r = 8 rounds of F(K, IV ) and evaluate the χ2

statistic on the least-significant bit-slice in the state X of the output. In a χ2

test on 4 bits with threshold T = 80, the probability a uniform random source
gives χ2 > 80 is around 2−34. For 100 experiments using random keys, the results
are listed in Tab. 6. ut

Table 6. Average χ2 statistic in the experiment for r = 8 rounds and a varying number
of samples.

All Keys

N average χ2 value % values > 80

210 40 3
212 119 67
214 421 100

For all three choices of N , the assigned bias ε2 = (χ2 − 15)/16N becomes
about 2−9.2 (see Appendix A). This is in good agreement with the model of
Section 5.1, which predicts an average bias of ε2 = 2−9.8 in this setup7. Of course,
the initial state cannot be accessed by an attacker, so the χ2 test has perhaps a
certificational character. However, the setup of Ex. 6 does not require any key
bit to be known, and the number of samples N is very small. Consequently, this
non-randomness may be a basis for future attacks that includes analysis of the
filter function g.

The non-randomness is not limited to the least significant bit-slice. A notable
example is i = 8 (and with other parameters as in Ex. 6), which results in an
average value of χ2 = 45 for N = 210. This is a consequence of the specific setup
in Ex. 6 where bit-slices i = 8, 9 . . . of X after the first round are the same for
all N states and so the effective number of rounds is only r− 1 (in addition, the
biased bit 1 of bit-slice 0 is rotated into bit-slice 8).

The above experiment with i = 8 was carried out for a varying number of
rounds, see Fig. 2. In order to measure χ2 values for a larger number of rounds,
we increased the number of samples to N = 218. This was done by choosing zero
IV bytes i0, i1, . . ., i5 and counting up i6, i7, i8, i9 from 0 to N−1. Supplementary
experiments revealed that ε2 is approximately constant for different values of N ,
7 Notice that two input bits of bit-slice i = 0 are always zero in the setup of Ex. 6.

This has a small influence on the modeled bias in Tab. 5.

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



r χ2 ε2

6 47593 1.1× 10−2

8 6067 1.4× 10−3

10 1437 3.4× 10−4

12 260 5.8× 10−5

14 44 6.8× 10−6

6 7 8 9 1 0 1 1 1 2 1 3 1 4
1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

bia
s

r o u n d s

Fig. 2. Average χ2 and the assigned bias ε2 for r = 6, . . . , 14 rounds (where the bias
ε2 is plotted on the right).

hence ε2 is a good measure for the diffusion of F. The bias ε2 in terms of r can
be approximated by an exponential decay and in one round ε2 is reduced by
a factor of about 2.5. By extrapolation, we expect that about r = 32 rounds
would be necessary to obtain a bias of ε2 = 2−40. In an extended experiment
one could also measure the effectiveness of the combined initialisation function
F and update function ft. For example, with r = 8, t = 50 and N = 218, we
observed an average value of χ2 = 32 when using the same setup as previously.
However we did not observe a bias in the keystream.

6 Conclusions

In this paper we considered the way the key and the initialisation information is
used in two Phase 2 candidates in eSTREAM. In the case of TSC-4, the initial
cipher state is derived using eight applications of a warm-up function. Non-
randomness over all eight iterations can be detected in the initial state with
about 1000 inputs. Each additional round increases the data requirements by a
factor of about 2.5 and this non-randomness requires the attacker to choose IV
bits only. However no bias in the keystream of TSC-4 resulting from this non-
randomness has yet been detected, so it remains to be seen if our observations
can form the basis for an attack in the future. As the rating of Focus candidate
in eSTREAM Phase 2 testifies, Salsa20 is widely viewed as a very promising
proposal. Nothing in this paper affects the security of the full version of the
cipher. However we expect that the key can be recovered from five rounds of 128-
bit Salsa20 with around 281 operations and six rounds of 256-bit Salsa20 with
around 2177 operations. Both attacks would require very moderate amounts of
text. If we allow related-key attacks then the security of seven rounds of 256-bit
Salsa20 might be in question with around 2217 operations. However, given divided
opinions on such an attack model, we prefer to observe that a statistical weakness
has been observed over seven rounds. While we anticipate some progress, we are
doubtful that many more rounds can be attacked using the methods of this
paper. Thus Salsa20 still appears to be a conservative design. Given our results,
however, we are doubtful that Salsa20/8 will offer adequate security in the future,
though Salsa20/12 could turn out to be a well-balanced proposal.

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



Acknowledgments

The first and second author are supported in part by grant 5005-67322 of NCCR-
MICS (a center of the Swiss National Science Foundation). The second author
also receives partial funding through GEBERT RÜF STIFTUNG. Other authors
are supported by the French Ministry of Research RNRT X-CRYPT project and
by the European Commission through the IST Program under Contract IST-
2002-507932 ECRYPT.

References

1. D.J. Bernstein. Salsa20. In eSTREAM, ECRYPT Stream Cipher Project, Report
2005/025.

2. D.J. Bernstein. Salsa20/8 and Salsa20/12. In eSTREAM, ECRYPT Stream Cipher
Project, Report 2006/007.

3. D.J. Bernstein. Related-key attacks: who cares? In eSTREAM discussion forum,
June 22, 2005. http://www.ecrypt.eu.org/stream/phorum/read.php?1,23.

4. A. Biryukov. A New 128 Bit Key Stream Cipher: LEX. In eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/013.

5. P. Crowley. Truncated Differential Cryptanalysis of Five Rounds of Salsa20. In
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/073.

6. J. Daemen, R. Goverts, and J. Vandewalle. Resynchronization Weaknesses in
Synchronous Stream Ciphers. In Advances in Cryptology - EUROCRYPT 1993,
LNCS 765, pages 159–167. Springer-Verlag, 1993.

7. M. Dichtl and M. Schafheutle. Linearity Properties of the SOBER-t32 Key Load-
ing. In Fast Software Encryption 2002, LNCS 765, pages 159–167. Springer-Verlag,
1993.

8. P. Ekdahl and T. Johansson. Another Attack on A5/1. In IEEE Transactions on
Information Theory, volume 49/1, pages 284–289, 2003.

9. S.R. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the Key Scheduling Algo-
rithm of RC4. In Selected Areas in Cryptography 2001, LNCS 2259, pages 1–24.
Springer-Verlag, 2001.

10. S. Künzli, P. Junod, and W. Meier. Distinguishing Attacks on T-functions. In
Progress in Cryptology - Mycrypt 2005, LNCS 3715, pages 2–15. Springer-Verlag,
2005.

11. F. Muller and T. Peyrin. Linear Cryptanalysis of the TSC Family of Stream
Ciphers. In Advances in Cryptology - ASIACRYPT 2005, LNCS 3788, pages 373–
394. Springer-Verlag, 2005.

12. D. Moon, D. Kwon, D. Han, J. Lee, G.H. Ryu, D.W. Lee, Y. Yeom, and S. Chee.
T-function Based Streamcipher TSC-4. In eSTREAM, ECRYPT Stream Cipher
Project, Report 2006/024.

A The χ2 Test

Let X := X1, X2, . . . , XN denote N i.i.d. random variables where each Xi ∈
{x0, . . . , xm} and with unknown distribution. A χ2 test is applied on the obser-
vation X, in order to decide if the observation is consistent with the hypothesis

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006



that Xi have distribution DU . Let Ni be the number of observations xi in X,
and Ei the expectation for xi under distribution DU . Then, the χ2 statistic is a
random variable defined by

χ2 :=
m∑
i=1

(Ni − Ei)2

Ei
. (3)

In the case of a uniform distribution DU , one has Ei = N/m. The χ2 statistic
(for large N) is then compared with the threshold of the χ2

α,m−1 distribution
having m−1 degrees of freedom and significance level α. Consequently, a χ2 test
can be defined by a threshold T , where the hypothesis is accepted if χ2(X) < T .

If X has uniform distribution DU , the expectation of χ2 becomes EU (χ2) =
m− 1. If X has another distribution DX (which is assumed to be close to DU ),
then the expectation of χ2 becomes about EX(χ2) = (c + 1)m − 1 , where
c := Nε2 and ε2 :=

∑
ε2i with probability bias εi := PrX(xi)− PrU (xi). Notice

that EX(χ2) differs from EU (χ2) significantly, if c = O(1). Consequently, about
N = O(1/ε2) samples are required to distinguish a source with distribution DX

from a source with distribution DU .

B Weak Key Conditions for Example 3

The key conditions for the weak key class of Ex. 3 are on k0 and k6. First set
the following bits of k0 to the values shown:

bit number: 0 1 20 21 22 23
value: 0 1 0 0 1 1

Next set bit 7 of k6 equal to bit 7 of T where c1 = 0x3320646E and

T = (((k0 + c1) ≪ 7) + c1) ≪ 9.

Note that all these conditions are randomly satisfied with a probability of 2−7.

Appeared in Rana Barua and Tanja Lange(Eds.): INDOCRYPT 2006, LNCS 4329,pp. 2–16,
2006.

c© Springer-Verlag Berlin Heidelberg 2006


