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Abstract. Since the very beginnings of cryptography many centuries
ago, key management has been one of the main challenges in crypto-
graphic research. In case of a group of players wanting to share a com-
mon key, many schemes exist in the literature, managing groups where all
players are equal or proposing solutions where the group is structured
as a hierarchy. This paper presents the first key management scheme
suitable for a hierarchy where no central authority is needed and permit-
ting to manage a graph representing the hierarchical group with possibly
several roots. This is achieved by using a HMAC and a non-hierarchical
group key agreement scheme in an intricate manner and introducing the
notion of virtual node.
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1 Introduction

Key management scheme is one of the fundamental cryptographic primitive after
encryption and digital signature. Such scheme allows e.g. two parties to securely
exchange information among them. A running direction of research on key man-
agement is to generalize two party key agreement schemes to multi party setting,
where a group of users try to create cryptographic keys together.

There are currently two main approaches regarding this generalization, de-
pending on the structure of the group. In some cases, all members of the group
are considered equals and each of them participates approximately at the same
level to the construction of a cryptographic key that is finally shared by all mem-
bers: this is called “group key management”. Many papers exist in the literature
in this case and their aim is to make the better generalization of the seminal
Diffie-Hellman paper, dealing with authentication or group’s dynamicity.

The second approach deals with hierarchy-based access control where mem-
bers of the group are related one to another by a subordination relation while
trying to access some protected documents. In this case, the group is most of
the time represented as an oriented graph with no oriented cycle. In this set-
ting, there is one key per group member and the main issue is then to provide
a hierarchy of the keys in such a way that it is possible for a group member to
derive from her own key all the keys that are lower in the graph. In this case, the
dynamicity of the group concerns either the possibility to add or delete nodes in
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the graph, or the capacity to modify the key of a particular node. Ideally, these
modifications imply the modification of a minority of node keys.

1.1 Related Work

The first work on this problem of key management in a hierarchy was by Akl
and Taylor in 1983 [1]. Since then a large number of papers have been published
[2, 4, 6, 7, 8, 9, 10, 12, 13, 17, 19, 21, 23, 25, 26, 27, 28, 29] and they can be
divided into several families.

The first family contains the original paper of Akl and Taylor and its different
improvements [1, 7, 10, 13, 17, 21]. These protocols use a Central Authority (CA)
to generate keys and related public data. The dynamicity of the graph is not
always possible in these proposals, and even in this case, a modification implies
the recalculation of the keys of some predecessors. The second family is based
on Sibling Intractable Function Family (SIFF) [12, 27]. While these solutions
use a CA for generation and dynamism of the graph, their low complexity is
quite attractive. The main problem comes from the difficulty to decide if a
practical algorithm to generate such function exists or not (even in the literature
[2, 22, 28]). The third group of papers uses polynomial interpolation [6, 9, 29]
but [6] and [9] do not consider the dynamicity of the group, and the way to update
keys in [29] is relatively inefficient. In the last group of papers [2, 4, 8, 19, 26, 28],
the keys are randomly generated and the role of the CA is to provide the public
link between them. Different possibilities are proposed and the best ones only use
low cost operations as hash functions or xor operations. Two other papers [23, 25]
use many modular exponentiations and thus induce a high complexity. Note that
the solution in [25], even if presented with a CA, can be described without.

Mainly all these proposals use a Central Authority and only consider the case
of a rooted graph. It is thus an open problem to describe an efficient graph key
management in a multi-rooted oriented graph where (i) no Central Authority is
needed and (ii) in which we can manage dynamic graphs.

1.2 Our Contribution

Our main idea in the construction of a graph key management is that we use at
the same time two different solutions, depending on the structure of the subgraph
we are considering. More precisely, the method to compute the key of a node
in the graph depends on the number of fathers this node has. If there is one
father, we use a Message Authentication Code (MAC) function on input the key
of the father, a counter enumerating (approximately) the number of children of
the father and a security constant.

The case where a node has several fathers cannot be treated as the case
of one father and we thus adopt a different approach which consists in using
group key agreement for a non-hierarchical group (in our case, the group of the
fathers). More precisely, we introduce the concept of Refreshable and Replayable
Group Key Agreement (R&R-GKA) schemes where the main difference with
a traditional GKA scheme is that the internal state information is not truly
composed of ephemeral secret information using random data, as it is the case
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in existing GKA schemes. Moreover, we require an additional algorithm to replay
the creation of the shared key using one private information and some public
data, and we finally need a refresh method that permits to renew the shared key
with a minimal effect on player’s keys.

Our second trick is used when several fathers have several children in common.
In that case, we introduce a virtual node between fathers and children so as to
speed up the generation phase by using the “one-father method”.

1.3 Organization of the Paper

The paper is organized as follows. After the present introduction, we set up in
Section 2 our model for key management in an oriented graph. The cryptographic
primitives we will use later are given in Section 3. Section 4 presents our scheme
and its security arguments. Finally, we provide a conclusion in Section 5 and the
bibliography afterward.

2 Problem and Model

The problem of access control in a hierarchy appears when users get different
rights on common resources. As an example, workers in a company use com-
mon resources but according to their positions or their departments, they are
not allowed to access the same documents. Another example could be on-line
newspapers: different subscriptions lead to different rights.

For our part, we study the cryptographic aspect of access control. We represent
the hierarchy by a graph and we look at access control as a problem of key
management in that graph.

2.1 Notation

We consider an oriented graph denoted G = {N, A} where N = {n1, n2, ..., nl},
of cardinality l, is the set of nodes (in the following a node is denoted either ni

or simply i) and A = {a1, a2, ..., am}, of cardinality m, is the set of edges, such
that there is no oriented cycles. An edge a ∈ A corresponds to a couple of nodes
(ni, nj), representing the fact that there is an edge going from node ni to node
nj . ni is called the father and nj is the child. We denoted by Fi (resp. Ci) the
number of fathers (resp. children) of the node ni. The set of fathers of node ni

is denoted by Fi = {fi[1], · · · , fi[Fi]} and the set of children of a node nj is
denoted Cj = {cj[1], · · · , cj [Cj ]}.

A path P = {a1, · · · , ak} of cardinality k is a set of edges where for all
i ∈ {1, · · · , k − 1}, if ai = (ni0 , ni1) and ai+1 = (ni2 , ni3), then ni1 = ni2 : we
also talk of the path from the first node to the last one.

If there is a path from node ni to node nj , we say that ni is an ascendant
of nj and that nj is a descendant of ni. We denote by Di the set of descendant
nodes of node ni and by Aj the set of ascendant nodes of node nj . Note that
Fi ⊂ Aj and Ci ⊂ Dj .



216 S. Canard and A. Jambert

Each node j represents a subgroup of members that share the same secret
cryptographic key, named the node key and denoted knj (or simply kj) related
to a public value pvnj (or simply pvj). In the following, we consider a subgroup
as a unique entity to avoid some authentication problems for which it exists well-
known techniques. As we consider oriented graphs, we have a hierarchy between
nodes. As a consequence, a node key knj should be computable by all members
of subgroups/nodes that belong to Aj .

2.2 Actors and Procedures

We present in this section a formal definition of a graph key management scheme
for a graph G. A graph key management scheme implies a set P of l players
denoted P1, · · · , Pl. Each player Pi corresponds to a node i in the graph. In the
following, we consider that the graph representation G is known by all players
of the system.

Definition 1. A Graph Key Management scheme (noted GKM) consists in the
following algorithms:

– Setup is an algorithm which on input a security parameter τ generates the set
of parameters of the system Γ . We now consider that the security parameter
τ belongs to Γ .

– UserSetup is an algorithm which on input the set of parameters Γ provides
each player in P with a long-lived key pair (ski, pki). From now on, Γ in-
cludes the public keys pki of all players.

– KeyGeneration is an algorithm which launches a protocol between all players
P1, · · · , Pl, each of them taking on input the parameters Γ of the system
and the long-lived key pair (ski, pki). Each player secretly outputs the first
instance of the key related to its node, denoted ki[0]. The algorithm outputs
the first instance of some related public elements denoted PE[0].

– KeyDerivation is an algorithm which on input the parameters Γ , a node j, a
player Pi and an instance ρ provides the player Pi using the ρ-th instance of
her node key ki[ρ] and the corresponding public elements PE[ρ] with either
an error message ⊥ if i /∈ Aj or the corresponding ρ-th instance of the key
of node j, that is kj [ρ].

– KeyRefresh is an algorithm which on input the node j that needs to be re-
freshed launches a protocol between all players P1, · · · , Pl. Each player takes
on input the parameters Γ , the current instance ρ, their corresponding node
key ki[ρ] and the corresponding public elements PE[ρ] and secretly outputs
the new instance of the node key, denoted ki[ρ + 1]. The algorithm outputs
the new instance of some related public elements denoted PE[ρ + 1].

Remark 1. The efficiency of the KeyRefresh algorithm is a really important issue
and if a particular node needs to be refreshed, this procedure should not (and
needs not to) modify all the keys in the graph. The best configuration is when
only the keys of the descendant nodes are modified. Note also that, for simplicity
reasons, we consider in our model that all the keys change their version during
this procedure, even if the new version may be equal to the previous one for
some particular nodes.
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2.3 Security Properties

A Graph Key Management scheme must have the Key Recovery security prop-
erty. This corresponds to the fact that any coalition of players can’t recover the
key of a node which does not belong to their descendants.

The Key Recovery property corresponds to the following Experiment.

Experiment Expkeyrecovery
GKM,A :

1. the challenger C initializes the system and sends the graph to A.
2. A interacts with the system by generating and refreshing (player) keys, cor-

rupting players and/or keys. At any time of the experiment, it must remain
at least one key which is not corrupted. A key is considered as corrupted if
at least one of its ascendant is corrupted or if the player corresponding to
this node has beforehand been corrupted.

3. A finally outputs the identifier of the graph key management π, a node i, an
instance ρ and an uncorrupted node key k.

We define the success of an adversary A for this experiment as:

Succkeyrecovery
GKM,A (τ) = Pr [k = ki[π, ρ]] .

Definition 2 (Key Recovery). We say that a GKM scheme satisfies the Key
Recovery property if Succkeyrecovery

GKM,A (τ) is negligible.

Remark 2. Note that this security model is stronger than the one given in e.g. [2]
since this is the adversary who chooses the node he wants to focus on. In [2], a
challenger chooses one particular node and the adversary has to output the key
of this node. Note also that it is not possible to use a decisional experiment in
graph key management where the aim of the adversary is to distinguish a true
key from a random one (as it is done for many other key agreement primitives)
since it is enough for the adversary to corrupt a descendant node and checks the
consistency of the key derivation to win such game.

3 Useful Tools

3.1 The HMAC Functions

A cryptographic message authentication code (MAC) is a cryptographic tool
used to authenticate a message and belongs to the family of symmetric cryptog-
raphy. A MAC scheme is composed of a key generation algorithm KeyGen which
permits to generate the MAC key denoted K. The code generation algorithm
MAC accepts as input the secret key K and an arbitrary-length message m and
outputs the message authentication code for message m, under the secret key
K: Σ = MAC(K, m) . Finally, the code verification algorithm VerMAC takes as
input a message m, the secret key K and a message authentication code Σ ∈ C
and outputs 1 if Σ = MAC(K, m) and 0 otherwise.
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To be considered as secure, a MAC scheme should resist to existential forgery
under chosen-plaintext attacks (EF-CMA), which means that even if an adver-
sary A has access to an oracle which possesses the secret key and generates
MACs for messages chosen by the adversary, A is unable to guess the MAC for
a message it did not query to the oracle.

In our graph key management scheme (see Section 4), the used MAC scheme
needs furthermore the pseudorandomness property, which says that an adversary
is unable to distinguish the output of a Pseudo-Random Function (PRF) from a
true random value. As a consequence, we will use the HMAC construction [20]
which has been proved to be a PRF by Bellare [3].

3.2 The Notion of Refreshable and Replayable Group Key
Agreement

A Group Key Agreement (GKA) scheme is a mechanism which permits to es-
tablish a cryptographic key shared by a group of participants, based on each
one’s contribution, over a public network. It exists several GKA schemes in the
literature, using either an authenticated mode [5] or not [15, 16, 18, 24]. Note
that it is possible to transform any unauthenticated protocol to an authenticated
one using generic methods [11, 14].

In fact, in this paper, we need a GKA with some additional properties that
are naturally verified by many of these schemes. We thus introduce the notion of
Refreshable and Replayable Group Key Agreement (R&R-GKA) scheme. The
main difference with a traditional GKA scheme is that the internal state in-
formation is not truly composed of ephemeral secret information using random
data. Here, each player has a long-lived key to participate to the protocol but
also another “personal” secret key used to create the shared one and replacing
the ephemeral secret information. This new secret key can not be considered as
“long-lived” since it can be refreshed when necessary. Moreover, a R&R-GKA has
the following properties, which are reached most of the time by GKA schemes:

– it is a contributory Group Key Agreement protocol (GKA) [16],
– we require an additional deterministic algorithm which accepts previously

fixed inputs and which is (once initialized) replayable by any player using
his private information and some public data,

– it should contains a refresh method that permits to renew the shared key
with a minimal effect on player’s personal secret keys.

Procedures. More formally, we have the following definition, which is de-
rived from [5]. Let P be the set of potential players for the GKA, that is,
P = {P1, · · · ,Pl}.
Definition 3. A R&R-GKA scheme consists in the following algorithms:

– Setup is an algorithm which on input τ generates the set of parameters of
the system Γ . We now consider that the security parameter τ belongs to Γ .

– UserSetup is an algorithm which on input Γ provides each player in P with
a long-lived key pair (ski, pki). Γ now includes the players public keys pki.
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– KeyGeneration is an algorithm which on input a set I ⊂ P of players secretly
provides each player in I a first instance of a personal secret key ki[I, 0]
related to I. This algorithm then launches a protocol between all players in
I, each of them taking on input Γ , the long-lived key pair (ski, pki) and their
personal secret key ki[I, 0]. Each player secretly outputs the first instance of
the shared secret key of the set I denoted K[I, 0]. The algorithm also outputs
the first instance of some related public elements denoted PE[I, 0].

– KeyRefresh is an algorithm which on input a set I ⊂ P and a subset J ⊂ I
of players, secretly provides each player in J with a new instance of her
personal secret key related to I denoted ki[I, ρ + 1], if ρ is the current in-
stance. Each player in I \ J sets ki[I, ρ + 1] = ki[I, ρ]. This algorithm then
launches a protocol between all players in I, each of them taking on input
the set of parameters Γ , the long-lived key pair (ski, pki), the two instances
of their personal secret key ki[I, ρ] and ki[I, ρ + 1], K[I, ρ] and PE[I, ρ].
Each player secretly outputs the new instance of the shared secret key of the
set I denoted K[I, ρ + 1]. The algorithm also outputs the new instance of
the public elements denoted PE[I, ρ + 1].

– KeyRetrieve is an algorithm which on input a set I ⊂ P, a player Pi ∈ I and
an instance ρ, provides the player Pi taking on input the parameters Γ , the
ρ-th instance of her personal secret key ki[I, ρ] and the corresponding public
elements PE[I, ρ] with the corresponding ρ-th instance of the common secret
for I, that is K[I, ρ].

Note that the UserSetup procedure is done only once whereas the KeyGeneration
one can be done several times, possibly in a concurrent manner.

Security property. It is commonly believed that the best security property for
group key agreement is the Key Independence one (also known as Authenticated
Key Exchange (AKE) property), where the aim of the adversary is to distinguish
a true shared key from a random value. In this paper, we need to be sure that
an adversary can not learn a non-corrupted instance of the personal secret key
of a player. Since the adversary has access to the KeyRetrieve method, this is
obviously related to the Key Recovery property, which says that the adversary
can not compute a non-corrupted instance of the shared key.

4 Our Key Management Scheme

In this section, we present our solution of key management in an oriented graph
structure. We first give an overview and then detail all procedures. Note that it
is possible to use our method either in a centralized or in a distributed mode. In
the first case, the roots generate all the keys and finally distribute them to all
nodes. In the latter case, all nodes participate in the generation of the keys. In
both cases, it is possible to construct the keys of the hierarchy while all players
are not necessarily connected all the time.
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4.1 Overview of Our Solution

One of our main ideas in the construction of a graph key management is that we
use at the same time two different solutions, depending on the structure of the
subgraph we are considering. More precisely, the method to compute the key of
a child depends on the number of fathers this child has. We thus describe the
two possible methods.

The case of one father. In this case, we use a simple HMAC function. Let si

be a counter specific to the node i. This counter represents the number of times
the node i has computed a new key using his own. si is related to the number
of children, the number of refresh and potentially the dynamicity of the graph
(see Section 4.5) and is maintained by the node. For each new child, the node i
computes the HMAC function using its key ki and the message corresponding to
the concatenation of the counter si and a random constant number C ∈ {0, 1}τ

specific to the graph. After that, this counter is incremented for the next child.

The case of several fathers. Here, we adopt a different approach which
consists in using a non-hierarchical group key agreement (GKA) scheme. Let us
consider a node i having several fathers fi[1], . . ., fi[Fi], where Fi is the number
of fathers. Each father will be a player in the GKA scheme. By construction,
each node is consequently related to a node key which will be used as a personal
secret key in the GKA scheme.

As this shared value should be first computed interactively but also needs to be
recalculated non-interactively, it should be possible for a father to use his node key
and some public values to compute off-line the key of his child: we consequently
need a R&R-GKA scheme such as described in the previous section.

Virtual nodes. The problem with the above technique is firstly that the known
group key agreement schemes are deterministic and secondly that it implies
many computations for all actors. Our second trick is used when two or more
fathers have several children in common. In that case, we introduce a virtual
node between fathers and children so as to speed up the generation phase.

This virtual node v is inserted between the fathers (f1, f2 and f3) and the
children (c1 and c2), as shown in Figure 1.

This new node is also related to a cryptographic key denoted kv, computed
from the keys of the fathers using the above method based on group key agree-
ment schemes. Next, from this virtual key kv it is possible to compute the keys
for all children using the “one father” method, since this virtual node becomes
the unique virtual father of several children.

4.2 Detail Procedures

We are now able to describe in details the different algorithms and protocols
of our Graph Key Management scheme. Let τ be the security parameter, M
be a secure MAC such as defined in the previous section and GKA be a secure
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Fig. 1. The case of several fathers having several children

R&R-GKA scheme such as defined previously. Let G = {N, A} be a graph where
N = {1, 2, · · · , l} and A = {a1, a2, · · · , am}. In the following, a node is tag as
keyed when its key has been computed.

– Setup(1τ ): this algorithm consists first in choosing at random a value C ∈
{0, 1}τ and second in executing the GKA.Setup(1τ ) procedure which out-
puts GKA.Γ . The output of this algorithm is then Γ = (C, GKA.Γ ). This
procedure also modifies the graph to insert virtual nodes, such as explained
above and described in Figure 1. We denote G̃ = {Ñ, Ã} the new graph with,
by convention, Ñ = {1, 2, · · · , l̃} and Ã = {ã1, · · · , ãm}. Note that taken on
input the initial graph G, the new graph G̃ is unique.

– UserSetup(Γ ): it consists in executing the GKA.UserSetup(GKA.Γ ) proce-
dure which provides each player with a long-lived key-pair (ski, pki). All
public keys are included in GKA.Γ and thus in Γ .

– KeyGeneration(): for each node i ∈ Ñ , there are several cases.
• i has no father in the graph: the node key ki[0] is chosen at random in
{0, 1}τ . There is no corresponding public value in this case.

• i has one father f ∈ Ñ in the graph: let sf be the number of current
keyed children of f . Then

ki[0] = M.MAC(kf [0], C‖sf + 1).

The new number of keyed children sf + 1 for node f concatenated with
the focused node i corresponds to the related public information pki =
sf + 1‖i in this case.

• i has Fi fathers (f1, · · · , fFi): they execute the GKA.KeyGeneration pro-
cedure on input I = {f1, · · · , fFi} where each f ∈ I is “given” their
node key kf [0] as a personal secret key kf [I, 0]. During the execution
of this algorithm, the protocol between all players in I is launched. The
key ki[0] of the node i is then the output of this protocol, that is K[I, 0].
The related public element is then pki = PE[I, 0]‖i where PE[I, 0] is
outputted by the GKA.KeyGeneration algorithm.

At the end, at each node corresponds a key ki[0] and the algorithm outputs
the first instance of the public element PE[0] corresponding to the set of all
public information pki[0] outputted in the second and third cases.
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– KeyDerivation(Γ, j, i, ρ): we need first to choose the best path between the
nodes i and j. The choice of the smallest one (using standard graph shortest
path finder algorithms) is not necessarily the best one. Obviously, in terms of
computational efficiency, the case of one father (computation of a MAC) is
more efficient than the case of several fathers (execution of a GKA protocol).
Consequently, we should choose the path where the number of requests to
the GKA is the smallest one. This path can be found either by exhaustive
search or using a shortest path finder for weighted graphs. We now consider
that this algorithm exists (note that it can be executed only once at the
creation of the graph).

Then, for each node v in the path between the node i and the descendant
node j, this algorithm works as follows
• if v has one father f : let sv‖v be the part of the public element PE[ρ]

corresponding to the focused node v. Then, computes

kv[ρ] = M.MAC(kf [ρ], C‖sv).

• if v has Fv fathers (f1, · · · , fFv ): let pkv = PE[V , ρ]‖v be the part
of the public element PE[ρ] corresponding to the node v with V =
{f1, · · · , fFi}. Let f ∈ V be the father for which the key is known. This
key can come from either the input of the algorithm or by derivation
using one of the two methods. Then, executes the GKA.KeyRetrieve pro-
cedure on input V , f and ρ. f takes as inputs GKA.Γ , kf [V , ρ] = kf [ρ],
PE[V , ρ] and obtains the corresponding instance of the key kv[ρ].

– KeyRefresh(j): since we use virtual nodes, the targeted node has necessarily
one father f (either a “true” father or a virtual node). We necessarily have
kf [ρ + 1] = kf [ρ] if ρ is the current instance. Thus, if we denote by sf

the number of times this father has computed a key for one of his children
(either during the KeyGeneration procedure or a previous KeyRefresh one),
then computes

kj [ρ + 1] = M.MAC(kf [ρ + 1], C‖sf + 1).

The corresponding public information becomes pkj = sf + 1‖j.
Now that the key of the targeted node has been refreshed, the case of his

own child has to be studied. There are then two cases for the new targeted
node i, depending on the number of fathers the node has. If there is only
one, we can do again what we have done for the first refresh.

If there are several fathers (f1, · · · , fFi), let pki = PE[I, ρ]‖i be the part
of the public element PE[ρ] corresponding to the focused node i and where
I = {f1, · · · , fFi}. Let F ⊂ I be the set of fathers for which the key has
been previously refreshed. Then, executes the GKA.KeyRefresh procedure
on input I and F , where by assumption, each element f ∈ F has already
received a new instance of its node key kf [I, ρ + 1] = kf [ρ + 1]. This key
is next used as a personal secret key in the GKA.KeyRefresh procedure.
Again, for each v ∈ I \ F , we have kv[ρ + 1] = kv[ρ]. During the execution
of this algorithm, the protocol between all players in I is launched. The new
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instance of the key ki[ρ+1] of the node i is then the output of this protocol,
that is K[I, ρ + 1]. The related public information is pki = PE[I, ρ + 1]‖i
where PE[I, ρ + 1] is outputted by the GKA.KeyGeneration algorithm. The
new instance of the public elements is then the set of all pki.

4.3 Security Considerations

Theorem 1. Our key management scheme verifies the key recovery property
under the existential unforgeability and the pseudorandomness of the HMAC
and the key recovery property of the Group Key Management scheme.

Proof. The idea of the proof is to play two different games with a possible
adversary against the key recovery of our graph key management scheme. In
the first game, we design a machine winning the EF-CMA experiment of the
MAC scheme and in the second game, our machine tries to win the key recovery
experiment for the R&R-GKA scheme. We thus flip a coin and play one of the
two games. In case of success, we end and otherwise, we flip another coin. We
are sure to succeed with probability 1/2. Due to space limitation, the complete
proof is not given here.

Remark 3. During the KeyGeneration procedure, it is possible for a player to
cheat by not giving the right key to one of her descendant. In order to detect
such fraud, it is possible to add a key confirmation procedure where each node
publishes a label related to its secret node key.

4.4 Efficiency Considerations

It is possible to instantiate our generic construction with the Group Key Agree-
ment scheme presented in [16], where the solution is based on the use of a tree.
While this solution is not the most efficient one regarding the complexity point
of view, it fits very well our needs.

During the key generation phase of our construction, the case where there is
only one father is very efficient since only needing a HMAC operation. When
there are several fathers, we first insert the virtual node and then compute the
corresponding node key using e.g. [16]. For each virtual node v, each father
computes log2(Fv) + 1 modular exponentiations in a group of prime order. We
should add the so-called blinded keys [16], which corresponds to log2(Fv) − 1
modular exponentiations in a group of prime order for the whole group.

4.5 The Dynamic Case

In case of a dynamic graph, we need to add two new procedures.

AddNode. The key of the j-th child of a node is computed from his father’s
one thanks to a specific counter sf . In the static case, this counter is set to the
number of current children plus the number of refreshes. In the dynamic case,
this counter is also incremented when a new node is added to this father.
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DeleteNode. We need first to modify the graph. The targeted node is deleted and
the different links between ascendants and descendants are created. Note that
if a path already exists from an ascendant to a descendant, there is no need to
create a new one. In the second step, we refresh the keys in the sub-graph with
all fathers of the deleted node as root(s). This step uses techniques described
in either the KeyGeneration procedure or the KeyRefresh one and may use the
dynamicity of the R&R-GKA scheme (deletion of a group member) if necessary.

5 Conclusion

This paper describes the first key management scheme suitable for multi-rooted
oriented graphs with no oriented cycle without needing the presence of a central
authority. In the most general setting, this scheme can be used for access control
in a group with a hierarchical structure. Our construction mainly takes advantage
of the use of a group key agreement designed for a non-hierarchical structure.
We finally use virtual nodes in our graph so as to speed up the key generation
phase.
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