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Abstract. We present the first traitor tracing scheme with efficient black-box traitor tracing in which the ratio of the
ciphertext and plaintext lengths (the transmission rate) is asymptotically 1, which is optimal. Previous constructions in this
setting either obtained constant (but not optimal) transmission rate [KY02b], or did not support black-box tracing [CPP05].
Our treatment improves the standard modeling of black-box tracing by additionally accounting for pirate strategies that
attempt to escape tracing by purposedly rendering the transmitted content at lower quality.
Our construction relies on the decisional bilinear Diffie-Hellman assumption, and attains the same features of public trace-
ability as (a repaired variant of) [CPP05], which is less efficient and requires non-standard assumptions for bilinear groups.
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1 Introduction

Traitor tracing schemes constitute a very useful tool against piracy in the context of digital content distribution.
They are multi-recipient encryption schemes that can be employed by content providers that wish to deliver copy-
righted material to an exclusive set of users. Each user holds a decryption key that is fingerprinted and bound to
his identity. If a group of subscribers (the traitors) collude to construct an illegal device (the pirate decoder), the
security manager can run a specialized traitor tracing algorithm to uncover the source of the leakage. Therefore,
a traitor tracing scheme deters subscribers of a distribution system from leaking information by the mere fact that
the identities of the leaking entities can then be revealed.

The first formal definition of traitor tracing scheme appears in Chor et al. [CFN94,CFNP00], whose construc-
tion requires storage and decryption complexity O(t2 log2 t log(n/t)) and communication complexity O(t3 log4 t
log(n/t)), where n is the size of the universe of users and t is an upper bound on the number of traitors. Stinson and
Wei later suggested in [SW98] explicit combinatorial construction that achieve better efficiency for small values
of t and n.

The work of [NP98,CFNP00] introduced the notion of threshold traitor tracing scheme, where the tracing
algorithm is only required to guarantee exposure of the traitors’ identities for pirate decoders whose decryption
probability is better than a given threshold β. The scheme of [NP98] achieves storage complexityO(t/β log(t/ε)),
where ε is the probability of successfully tracing one of the traitors. Moreover, the scheme has communication
complexity linear in t and constant decryption complexity.

In [BF99], Boneh and Franklin present an efficient public-key traitor tracing scheme with deterministic t-
tracing based on an algebraic approach. Its communication, storage and decryption complexities are all O(t). The
authors also introduce the notion of non-black-box traceability: given a “valid” key extracted from a pirate device
(constructed using the keys of at most t users), recover the identity of at least one traitor. This is in contrast with the
notion of black-box tracing (on which we focus in this paper), where the traitor’s identity can be uncovered by just
observing the pirate decoder’s replies on “well crafted” ciphertexts. More recently, Boneh et al. [BSW06,BW06]
proposed traitor tracing schemes that withstand any number of traitors (full traceability), while requiring a sub-
linear ciphertext length (O(

√
n)). In [Pfi96], Pfitzmann introduces the notion of asymmetric traitor tracing. In

this model, tracing uncovers some secret information about the traitor that was a priori unknown to the system
manager. Thus, the result of the tracing algorithm provides actual evidence of the treachery. Further results in this
direction are in [KD98,KY02c,KY02a].
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Alternative traitor tracing solutions [FT01,BPS00,SW03] have also been proposed to fight leakage of the de-
crypted content, rather then leakage of the decryption capabilities.

As originally observed in [GSY99], traitor tracing scheme are most useful when combined with a re-
vocation scheme; such trace-and-revoke approach consists in first uncovering the compromised decryption
keys and then revoking their decryption capabilities, thus rendering the corresponding pirate decoder useless
[NP00,TT01,NNL01,DF02,DF03,KHL03,DFKY05,BW06].
Constant Transmission Rate. All proposals mentioned so far result into schemes that are not quite
communication-efficient: the length of each ciphertext is (at least) t times longer than the embedded plaintext.
As pointed out by Kiayias and Yung in [KY02b], an important problem in designing practical traitor tracing
schemes is to ensure a low transmission rate, defined as the asymptotic ratio of the size of ciphertexts over the
size of plaintexts, while at the same time minimize the secret- and the public-storage rates, similarly defined as the
asymptotic ratio of the size of user-keys and of public-keys over the size of plaintexts.1 Under this terminology,
the transmission rate of all the above mentioned solutions is linear w.r.t. the maximal number t of traitors, whereas
in [KY02b], Kiayias and Yung show that if the plaintexts to be distributed are large (which is the case for most
applications of traitor tracing, such as distribution of multimedia content), then it is possible to obtain ciphertexts
with constant expansion rate. Their solution is based on collusion-secure fingerprint codes [BS98,Tar03] and its
parameters are summarized in Figure 1.

Besides the clear benefit in terms of communication efficiency, schemes with constant transmission rate also
enjoy efficient black-box traceability, while schemes with linear transmission rate are inherently more limited in
this regard [KY01] (e.g., the black-box traitor tracing of [BF99] takes time proportional to

(
n
t

)
).

In [CPP05], Chabanne et al. extend the setting of [KY02b] with the notion of public traceability: Whereas
traditional tracing algorithms require knowledge of the system’s secret information, in a scheme with public trace-
ability everyone can run the tracing algorithm. In this paper, we also consider local public traceability, whereby
public information suffices to carry out the preliminary phase of tracing, which requires interaction with the pirate
decoder, and results in an encoding of the traitor’s identity that can be decoded with a master key. This separation
of tasks ensures that the system’s secret information is only needed for off-line operations (i.e., user registration
and possibly the final phase of tracing), thus improving the overall security of the system by allowing for safer
storage solutions.
The work of [PST06] describes a traitor tracing scheme with constant (but not optimal) transmission rate and (full)
public traceability based on Identifiable Parent Property (IPP) codes. Figure 1 also reports on these two schemes.
One could think that traitor tracing schemes with linear transmission rate (e.g. [BF99]) could easily be turned into
schemes with constant transmission rate by means of hybrid encryption: To send a large message, pick a random
session key, encrypt it with the given traitor tracing scheme, and append a symmetric encryption of the message
under the chosen anonymous session key. This approach, however, suffers from a simple yet severe untraceable
pirate strategy: Just decrypt the session key and make it available to the “customers” on the black market, e.g., via
anonymous e-mail, or via text-messaging from a pre-paid cellphone. Clearly, when a traitor tracing scheme is used
to encrypt the content directly, this “re-broadcasting” strategy becomes much less appealing for would-be pirates,
because of the higher costs and exposure risks associated with running a high-bandwidth darknet.
Our Contributions. We present the first public-key traitor tracing scheme with efficient black-box traitor tracing
and local public traceability in which the transmission rate is asymptotically 1, which is optimal. Encryption
involves the same amount of computation as in [CPP05]; decryption is twice as fast. We also considerably simplify
the computational hardness requirements, relying just on the DBDH assumption—much weaker and more widely
accepted than the non-standard bilinear assumptions employed in [CPP05].

Our treatment improves the standard modeling of black-box tracing by additionally accounting for pirate strate-
gies that attempt to escape tracing by purposedly rendering the transmitted content at lower quality (e.g. by drop-
ping every other frame from the decrypted video-clip, or skipping few seconds from the original audio file).

1 We adopt a terminology slightly different from the one of [KY02b], which uses the term ciphertext/user-key/public-key rates, for what
we called transmission/secret-storage/public-storage rates. Moreover, in [KY02b] transmission rate refers to the sum of the all the three
rates. Our choice is of course mostly a matter of taste: we prefer the terminology of this paper as it makes more evident the role played
by each quantity in a concrete implementation of the system.
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Transmission Rate Secret-Storage Rate Public-Storage Rate BB Tracing Public Traceability Hardness Assumption
[BF99] 2t + 1 2t 2t + 1 × × DDH
[KY02b] 3 2 4

√
∗ × DDH

[CPP05] 1 2 1 × × DBDH2-E ∧ DBDH1-M
[PST06] 7 1 1

√
full DDH

Repaired [CPP05] 3 2 6
√

local DBDH2-E ∧ DBDH1-M
Our Scheme 1 2 10

√
local DBDH

Fig. 1. Comparison of rates (transmission, secret- and public-storage rates) and tracing features (black-box tracing and public traceability)
between existing schemes and our construction. The “*” in the row labeled “[KY02b]” refers to the fact that the scheme of [KY02b] can
support black-box tracing using the tracing algorithm that we describe in Appendix C.2. The row labeled “[PST06]” refers to instantiating
their generic construction with ternary IPP codes and ElGamal-style encryption. The row labeled “Repaired [CPP05]” refers to the variant
of the scheme of [CPP05] that we suggest in Appendix C.3 to support black-box tracing.

As additional contribution, we point out and resolve an issue in the black-box tracing of [KY02b] (which
was also independently addressed in a revised version of their work [KY06]). We then show that [CPP05], which
extends [KY02b] and inherits its tracing mechanism, inherits in fact the above-mentioned problem, too. In this case,
however, fixing the black-box functionality requires changes that intrinsically conflict with the optimizations put up
by [CPP05] to achieve optimal transmission rate. In other words, [CPP05] can either provide optimal transmission
rate with only non-black-box tracing, or support local public traceability with sub-optimal transmission rate, but
cannot achieve both at the same time.
Organization. Section 2 introduces the tools needed for our construction. Section 3 defines the syntactic, security,
and traceability properties of traitor tracing schemes. We present our new traitor tracing scheme and its security
analysis in Section 4, and Section 5 discusses a concrete choice of parameters. In the Appendix, we point out a
flaw in the tracing algorithms of [KY02b] and [CPP05] and propose fixes.

2 Preliminaries

The security properties of our construction hinge upon the decisional bilinear Diffie-Hellman assumption (DBDH)
for (G1,G2). We refer the reader to Appendix A. for the relevant definitions.
Collusion-Secure Codes. Collusion-secure codes [BS98] provide a powerful tool against illegal redistribution of
fingerprinted material in settings satisfying the following Marking Assumption: 1) it is possible to introduce small
changes to the content at some discrete set of locations (the marks), while preserving the “quality” of the content
being distributed; but 2) it is infeasible to apport changes to a mark without rendering the entire content “useless”
unless one possesses two copies of the content that differ at that mark. Below, we include a formalization of the
notion of collusion-secure codes, adapted from [BS98].

Definition 1. Let Σ be a finite alphabet, and n, v ∈ Z≥0. An (n, v)-code over Σ is a set of n v-tuples of symbols
of Σ: C = {ω(1), . . . , ω(n)} ⊆ Σv.

Definition 2. Let T be a subset of indices in [1, n]. The set of undetectable positions for T is: RT = {` ∈ [1, v] |
(∀i, j ∈ T ).[ω(i)

` = ω
(j)
` ]}.

Notice that for each i ∈ T , the projection of each codeword ω(i) over the undetectable positions for T is the
same; we denote this common projected sub-word as ω|RT

. By the Marking Assumption, any “useful” copy of the
content created by the collusion of the users in T must result in a tuple ω̄ whose projection over RT is also ω|RT

.
This is captured by the following:

Definition 3. The set of feasible codewords for T is: FT = {ω̄ ∈ (Σ ∪ {?})v | ω̄|RT
= ω|RT

}.

Definition 4. Let ε > 0 and t ∈ Z≥0. C is an (ε, t, n, v)-collusion-secure code overΣ if there exists a probabilistic
polynomial-time algorithm T such that for all T ⊆ [1, n] of size | T |≤ t, and for all ω̄ ∈ FT , it holds that:
Pr[T (rC , ω̄) ∈ T ] ≥ (1 − ε), where the probability is over the random coins rC used in the construction of the
(n, v)-code C, and over the random coins of T .
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3 Public-Key Traitor Tracing Scheme with Public Traceability

Definition 5 (Public-Key Traitor Tracing Scheme). A public-key traitor tracing scheme is a 5-tuple of proba-
bilistic polynomial-time algorithms (Setup, Reg, Enc, Dec, Trace), where:

Setup: On input a security parameter 1κ, a collusion threshold 1t, and a bound n on the maximum number of
users, returns a public key pk along with some master secret information msk (cf. Reg and Trace);

Reg: Given msk and a user index i ∈ [1, n], outputs a “fingerprinted” user key ski;2

Enc: On input key pk and a message m (from the appropriate message space M, implicitly described by pk),
returns a (randomized) ciphertext ψ;

Dec: On input a user key ski and a ciphertext ψ, recovers the message encrypted within ψ;
Trace: Given the master secret key msk, the public key pk, and black-box access to a “pirate” decoder capable

of inverting the Enc(pk, ·) functionality, returns the user index of one of the traitors that contributed his/her
user key for the realization of the pirate decoder, or the special user index 0 upon failure.

For correctness, decryption with any user key output by Reg should “undo” encryption:

Pr

[
Dec(ski,Enc(pk,m)) = m

∣∣∣∣∣(pk,msk) R← Setup(1κ, 1t, n),m R←M,

i
R← [1, n], ski

R← Reg(msk, u)

]
= 1,

where the probability is over the random coins of Setup, Reg, Enc, Dec, and over the random selection of m
fromM and of i from [1, n].

Definition 6 (Full/Local Public Traceability). A public-key traitor tracing scheme is said to support: 1) public
traceability if the Trace algorithm can be implemented without the master secret key msk; or 2) local public
traceability if the Trace algorithm can be split in an on-line phase, in which the pirate decoder can be queried
without knowledge of the secret key, and an off-line phase, without access to the pirate decoder, that can retrieve
the identity of the traitor from the master secret key and the output of the publicly executable on-line phase.

Requirements on the Encryption Functionality. For security, encryption of distinct messages under a traitor
tracing scheme should look indistinguishable to any efficient algorithm that is allowed to pick the two messages
based on the public key of the system, but without knowledge of any user key:

Definition 7 (Indistinguishability under Chosen-Plaintext Attack). A public-key traitor tracing scheme satis-
fies εind-indistinguishability if, for any pair of probabilistic polynomial-time algorithms (A1,A2), it holds that:

Pr

A2(state, ψ∗) = b∗

∣∣∣∣∣∣∣
(pk,msk) R← Setup(1κ, 1t, n),

(m0,m1, state)
R← A1(pk),

b∗
R← {0, 1}, ψ∗ R← Enc(pk,mb∗)

 ≤ 1
2

+ εind,

where the probability is over b∗, and the random coins of A1, A2, Setup, and Enc.

Requirements on the Tracing Functionality. Existing literature usually models black-box traceability as the
ability to “extract” the identity of (at least) one traitor from pirate decoders that correctly invert the decryption
algorithm (under appropriate efficiency and success probability constraints). This approach, however, is often
criticized because it leaves the way open for pirate decoders that decrypt ciphertexts into plaintexts that closely
resemble (but are not identical to) the original plaintexts. For example, in the context of media distribution, the
pirate could purposedly remove few frames from the original video clip, or play the correct audio file at a lower
sampling rate. Such pirates could still attract a share of the black market, and since they actually do not correctly
invert the encryption functionality, the scheme’s traceability guarantees often would do not apply to them. To
account for pirate strategies of this sort, we allow traitors to specify a notion of “resemblance” in the form of a

2 Equivalently, we can think of Setup as outputting a vector of user keys, one per each user in the system; we will refer to either
formalization interchangeably.



5

polynomial-time reflexive, symmetric binary relation R over plaintexts, with R(m,m′) = 1 if customers would
accept m′ as a reasonable replacement for m.3 The only semantic constraint on R is that it shall not be so lax as
to deem random4 plaintexts similar to fixed ones, i.e., the quantity pR

.= maxm∈M Pr[R(m,m′) = 1 | m′ R←M]
shall be negligible (otherwise tracing is impossible, since a keyless decoder could simply output a random plaintext
as a “reasonable” decryption of any ciphertext). Similarly, tracing needs only be effective against efficient decoders
D whose success probability pD

.= Pr[R(m,D(Enc(pk,m))) = 1 | m R←M] is non-negligible.

Definition 8. A public-key traitor tracing scheme is εtrac-traceable if for any probabilistic polynomial-time traitor
strategy A, it holds that:

Pr

[
TraceD(·)(pk,msk) 6∈ T

∣∣∣∣∣(pk,msk) R← Setup(1κ, 1t, n),

(D,R) R← A(pk)Reg(msk,·)

]
≤ εtrac

whereM is the message space, T ⊆ [1, n] is the set of up to t indices on whichA queried the Reg(msk, ·) oracle,
D and R both run in probabilistic polynomial-time and are such that pD is non-negligible and pR is negligible,
and the probability is over the coins of Setup, Reg, A, D and Trace.

Notice that Definition 8 subsumes the case that the traitor strategy A only produces a “good” pirate decoder
D with a low (but non-negligible) probability: indeed, any such strategy can be “boosted” by simply keeping
executingA on fresh random coins, until the pirate decoderD thatA outputs is a good one (which can be efficiently
tested by estimating D’s decryption capability on the encryption of a random plaintext).

4 Public-Key Traitor Tracing with Public Traceability, Black-Box Tracing and Optimal
Transmission Rate

Similarly to the schemes of [KY02b] and [CPP05], our construction is based on the use of an (ε, t, n, v)-collusion-
secure code C over the alphabet {0, 1} (cf. Definition 4). At a high level, the idea is to first define a two-user
sub-scheme resilient against a single traitor, and then “concatenate” v instantiations of this sub-scheme according
to the code C; in particular, each user i ∈ [1, n] is associated to a codeword ω(i) in C, and given decryption key
ski

.= (K
1,ω

(i)
1

, . . . ,K
v,ω

(i)
v

), where ω(i)
j is the j-th bit of the codeword ω(i), andKj,0,Kj,1 are the keys for the j-th

instantiation of the basic two-user sub-scheme. Although the overall architecture that we follow is well-known,
achieving optimal transmission rate along these lines requires solving a number of technical problems, on which
we elaborate in Section 4.4.

4.1 Our Two-User Sub-Scheme

Setup: Given a security parameter 1κ, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible bilinear map e :
G1 × G1 → G2. Choose an arbitrary generator P ∈ G1.

Step 2: Pick random elements a, b, c ∈ Z∗q , and set Q .= aP,R
.= bP, h

.= e(P, cP ). Compute two linearly
independent vectors (α0, β0) and (α1, β1) in Zq such that bασ + aβσ = c mod q, for σ ∈ {0, 1}. The
private key of the security manager is set to be msk

.= (a, b, α0, β0, α1, β1).
Step 3: For σ ∈ {0, 1}, let Aσ

.= ασR and Bσ
.= βσP . Choose a universal hash function H : G2 → {0, 1}κ,

and set the public key of the scheme to be the tuple

pk
.= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1).5

The associated message space isM .= {0, 1}κ.
3 Alternatively, the resemblance relation R could be specified as a parameter of the scheme in the definition of the Trace algorithm.
4 For the sake of simplicity, in this paper we discuss only the case of random sampling from M, but the treatment generalizes to the case

of other plaintext distribution with high min-entropy.
5 Note that there is no need to explicitly include h in the public key, as it can be derived as h = e(P, Aσ) · e(Q, Bσ). Caching the value of
h, however, is recommendable when public storage is not at a premium, as that would save two pairing computations during encryption.
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Reg: For σ ∈ {0, 1}, the secret key of user σ is set to be skσ
.= ασ. Notice that cP = ασR + βσQ and hence

h = e(P, cP ) = e(P, ασR) · e(Q, βσP ) = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}.
Enc: Given pk, anybody can encrypt a message m ∈M by first selecting a random k ∈ Zq and then creating the

ciphertext ψ .= 〈U, V,W 〉 ∈ G2 × G1 ×M where

U
.= e(P,R)k, V

.= kQ, W
.= m⊕H(hk)

Dec: Given a ciphertext ψ = 〈U, V,W 〉, user σ computes hk = Uασ · e(V,Bσ) and recovers m = W ⊕H(hk).
Correctness of the decryption algorithm is clear by inspection.

Trace: To trace a decoder D with resemblance relation, feed D with the “illegal” ciphertext ψ̂
.=

〈e(P,R)k′ , kQ, m̂ ⊕ H(e(P,Aσ)k′e(Q,Bσ)k)〉, for random σ ∈ {0, 1}, k, k′ ∈ Zq, m̂ ∈ M. If the out-
put m∗ of D satisfies R(m̂,m∗) = 1, then return σ as the traitor’s identity; otherwise, pick fresh random
σ ∈ {0, 1}, k, k′ ∈ Zq, m̂ ∈M and repeat.

Before moving on to the security and traceability of our two-user scheme in the sense of Definitions 7 and 8 (cf.
Section 3), we remark that Trace does not require knowledge of the master secret key msk, and thus it supports
full public traceability (cf. Definition 6). Also, notice that decryption requires only one pairing computation.

4.2 Indistinguishability under Chosen-Plaintext Attack

Theorem 9. Under the DBDH assumption for (G1,G2), the scheme in Section 4.1 is secure w.r.t. indistinguisha-
bility under chosen-plaintext attack (cf. Definition 28 and Definition 7).

Proof. To a contradiction, let us assume that the scheme does not satisfy Definition 7 i.e., there is an adversary
A = (A1,A2) that, given the public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1), can break the scheme
with non-negligible advantage εind. We then construct an algorithm B (whose running time is polynomially related
to A’s) that breaks the DBDH assumption with probability εDBDH = εind.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH problem in (G1,G2); its task is
to determine whether h′ = e(P ′, P ′)xyz , or h′ is a random element in G2. B proceeds as follows:

Setup: B sets P .= xP ′ and Q .= P ′. Then, B picks r R← Z∗q , and sets R .= rQ. B now chooses β0, β1
R← Z∗q and

computes B0
.= β0P and B1

.= β1P . Then, B sets A0
.= zP ′ and h .= e(P,A0) · e(Q,B0). Finally, B sets

A1
.= A0 + β0Q− β1Q, so that in fact h = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}, as required.

B can now set pk
.= (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and send it to A1.

Challenge: A1 outputs two messages m0,m1 on which it wishes to be challenged, along with some state state to
be passed to A2. To prepare the ciphertext, B picks random b∗ ∈ {0, 1}, and sets

U
.= e(P, yP ′)r (= e(P,R)y), V .= yP ′ (= yQ),W .= mb∗ ⊕H(h′ · e(yP ′, xP ′)β0).

(Notice that this implicitly defines k = y.) Then, B sends A2 the challenge ciphertext ψ∗ .= (U, V,W ), along
with the state information state.

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}. B returns 1 if b′ = b∗ and 0 otherwise.

If h′ = e(P ′, P ′)xyz , then A2 gets a valid encryption of mb∗ , since (as we verify below) in this case the input
to the hash function in the computation of W is just hk:

h′ · e(yP ′, xP ′)β0 = e(P ′, P ′)xyz · e(yP ′, β0(xP ′)) = e(xP ′, zP ′)y · e(P ′, β0(xP ′))y

= e(P,A0)y · e(Q,B0)y = [e(P,A0) · e(Q,B0)]y = hy = hk,

as required by the encryption algorithm. Therefore, in this case A will successfully guess b′ = b∗ with probability
εind + 1/2.

On the other hand, when h′ is a random element of G2, the input to H is a random value, independent of any
other information in the adversary’s view. Since H is chosen from a universal hash function family, its output is
also (almost) uniformly random in {0, 1}κ, so that the value of W (and hence the whole challenge ciphertext ψ∗)
is completely independent from mb∗ . Thus, in this case b′ = b∗ holds with probability 1/2.

It follows that adversary B breaks the DBDH assumption with non-negligible advantage εDBDH = εind, con-
tradicting our hardness assumption. ut
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4.3 Traceability

To assess the effectiveness of the Trace algorithm from Section 4.1, we start with some observations about the
illegal ciphertexts that Trace uses in querying the decoder D:

Definition 10 (Valid and Probe Ciphertexts). Let σ ∈ {0, 1}, m̂ ∈ M, Û ∈ G1, V̂ ∈ G2, Ŵ = m̂ ⊕
H(Ûασe(V̂ , Bσ)), and ψ̂ = 〈Û , V̂ , Ŵ 〉. We say that the ciphertext ψ̂ is:

– valid, if Û = e(P,R)k, V̂ = kQ, for some k ∈ Zq;
– σ-probe, if Û = e(P,R)k′ , V̂ = kQ, for distinct k, k′ ∈ Zq.

Lemma 11 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the DBDH assumption for (G1,G2),
given the public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and the secret key skτ = ατ of user τ ∈ {0, 1}
(where Aτ = ατR), it is infeasible to distinguish a valid ciphertext from a τ -probe.

Proof. For simplicity, assume τ = 0. We proceed by contradiction: assume there is an adversary A that, given the
public key pk = (q,G1,G2, e,H, P,Q,R,A0, B0, A1, B1) and the secret key α0 of user 0, can distinguish valid
ciphertexts from probes with probability ε. We then construct an algorithm B (whose running time is polynomially
related to A’s) that breaks the DBDH assumption with probability εDBDH = ε.

Algorithm B is given as input an instance (P ′, xP ′, yP ′, zP ′, h′) of the DBDH problem in (G1,G2); its task is
to determine whether h′ = e(P ′, P ′)xyz or h′ is a random element in G2. B proceeds as follows:

Setup: B lets P .= xP ′, Q .= P ′, R .= yP ′, chooses α0, β0, β1
R← Z∗q and computes A0

.= α0R, B0
.= β0P

and B1
.= β1P . B also sets A1

.= A0 + β0Q − β1Q, which implicitly defines h = e(P,A0) · e(Q,B0) =
e(P,A1) · e(Q,B1). B now defines pk

.= (q, G1, G2, e, H , P , Q, R, A0, B0, A1, B1). Then, B prepares a
challenge ciphertext ψ̂ .= 〈Û , V̂ , Ŵ 〉 by setting Û .= h′, V̂ .= zP ′(= zQ, thus implicitly defining k = z) and

Ŵ
.= m̂⊕H(Ûα0e(V̂ , B0)), for m̂ R←M. At this point, B feeds A with pk, ψ̂, and α0.

Attack: A returns her guess to whether ψ̂ is a valid ciphertext or a probe (w.r.t. the public key pk).
Break: B outputs yes or no accordingly.

If h′ = e(P ′, P ′)xyz , then A gets a valid ciphertext since h′ = e(xP ′, yP ′)z = e(P,R)z , consistently with
the value of V̂ = zQ, as required by the encryption algorithm. Otherwise, h′ is a random value in G2, of the form
h′ = e(P,R)k′ , for some k′ totally independent from k = z, and thus ψ̂ is a 0-probe. Therefore, B breaks the
DBDH assumption with the same advantage as A’s i.e., εDBDH = ε. ut

An important consequence of Lemma 11 is that pirate decoders created by user τ reply to τ -probes with an m∗

such thatR(m̂,m∗) = 1 with non-negligible probability p̂D:

Corollary 12. Let D, R be the pirate decoder and resemblance relation output by a traitor strategy A based on
the user key ατ , such that pD is non-negligible and pR is negligible (cf. Definition 8). Let ψ̂ be a τ -probe for a
message m̂ R←M. Under the DBDH assumption, p̂D

.= Pr[R(m̂,m∗) = 1 | m∗ R← D(ψ̂)] is non-negligible.

Proof. To a contradiction, assume p̂D to be negligible. We then construct an efficient algorithm B that, given pk and
the secret key ατ of a single user, distinguishes valid ciphertexts from τ -probes as follows: on input a ciphertext
ψ̂ = 〈Û , V̂ , Ŵ 〉, B computes m̂ .= Ŵ ⊕ H(Ûατ · e(V̂ , Bτ )) from ατ and ψ̂. Notice that this value m̂ is correct
regardless of whether ψ̂ is a valid ciphertext or a τ -probe. Then, B feeds D with ψ̂, getting back a value m∗. If
R(m̂,m∗) = 1, then B concludes that ψ̂ must be valid; otherwise, B concludes that ψ̂ is a τ -probe. In other words,
B “interpolates” between the experiment defining probabilities pD and p̂D, so that B’s advantage in discerning
valid ciphertext from τ -probes is clearly pD − p̂D. But if p̂D were negligible, such algorithm B would violate the
statement of Lemma 11, proving our argument. ut

The next lemma addresses the case of pirate decoders fed with probes of the “wrong type”:

Lemma 13. Replacing ψ̂ with a (1− τ)-probe in the setting of Corollary 12, Pr[R(m̂,m∗) = 1] is negligible.
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Proof. We start with the observation that if we could somehow remove the message m̂ from the pirate decoder’s
view, then our thesis would follow immediately, since m̂ would then be independent from the message m∗ output
by D, and hence, by definition of pR,R(m̂,m∗) = 1 would hold with probability pR, which is negligible.

In fact, m̂ occurs in D’s view only in the third component of the (1 − τ)-probe ψ̂ .= 〈Û , V̂ , Ŵ 〉, as Ŵ =
m̂⊕H(Ûα1−τ e(V̂ , B1−τ )), so it suffices to show that Ûα1−τ e(V̂ , B1−τ ) is indistinguishable from random in D’s
view. Since B0, B1 both appear in the public key pk of the system, this boils down to proving that D cannot
distinguish Ûα1−τ from random. It also holds that Ûα1−τ = e(P,R)k′α1−τ = e(P,A1−τ )k′ , so that the task faced
by D is to tell e(P,A1−τ )k′ apart from random, given e(P,R), e(P,A1−τ ), and Û = e(P,R)k′ . But this is just the
DDH problem for group G2, whose hardness is implied by the DBDH assumption.

The above argument can be easily rephrased along the lines of the reductions described in the proofs of Theo-
rem 9 and Lemma 11; we refrain from doing so due to space limitations. ut

Theorem 14. Under the DBDH assumption for (G1,G2), our Trace algorithm has a negligible traceability error.

Proof. Let D, R be the pirate decoder and resemblance relation on which the Trace algorithm is being run, and
let τ be the traitor index. Corollary 12 guarantees that Trace will on average terminate after 2/pD queries to D.
Upon termination, Trace’s output will be wrong only if it happens that D replies to a (1− τ)-probe ψ̂ with an m∗

satisfying R(m̂,m∗) = 1, i.e., Pr[TraceD(·)(pk,⊥) 6∈ T ] = Pr[ψ̂ is a (1− τ)-probe | R(m̂,m∗) = 1], which
by Corollary 12, Lemma 13, and Bayes’ theorem is easily seen to equal pR/(pD + pR), which is negligible. ut

4.4 Our Multi-User Scheme

As mentioned at the beginning of Section 4, a common approach to extending a two-user construction to the multi-
user setting is to concatenate several instantiations (say, v) of the basic two-user scheme. Tracing in the resulting
multi-user scheme can then be performed iteratively as a sequence of v stages; in each stage, the pirate decoder is
queried with ciphertexts that are valid in all v components, except for one, which instead is crafted according to
the Trace algorithm of the two-user construction. In this way, if the decoder does not have both sub-keys for the
component currently under testing, it will be unable to tell that the ciphertext is invalid, and so the tracing procedure
of the two-user subscheme will determine which of the two sub-keys the decoder holds for that component.

Since tracing requires the ability to set up each component of the ciphertext independently of all the others, it
may seem necessary to use completely unrelated instantiations of the two-user sub-scheme for each component.
This is done, for example, in [KY02b]. (cf. Appendix B.2). Having independent components, however, clearly
leads to a multi-user scheme with the same transmission rate as the underlying basic two-user scheme, and so it
would not help us attaining optimal transmission rate. In fact, the scheme of [CPP05] (cf. Appendix B.4) manages
to get transmission rate 1 by sacrificing component independence, and instead using component-instances all very
closely related to each other. As we show in Appendix C.3, though, their scheme does not support black-box
traceability.

To solve this tension between transmission rate and black-box traceability, we move from the observation
that, at each stage, it suffices that a single component can be appropriately set up independently from the rest;
the remaining v − 1 can all be closely related to each other. Therefore, ciphertexts in our construction include a
“special” position `, where encryption is performed with instance of our two-user scheme that is specific to the
`-th component; the remaining (v − 1) positions, instead, are encrypted using a “shared” two-user scheme.

To prevent pirate decoders from selectively ignoring the “special” position (which is the only part of the cipher-
text that encodes tracing information), we follow the approach proposed in [KY02b], by which the encryption al-
gorithm preliminarily processes the plaintext with an All-Or-Nothing transform (AONT) [Riv97,Boy99,CDH+00].
This will force decoders to decrypt all blocks of the ciphertext, since ignoring even a single one would result in
missing at least one block of the AONT-transformed plaintext, so that, by the properties of AONT’s, such decoders
would fail to recover any information about the original plaintext being transmitted. We remark that reliance on
AONT’s to force the pirate to include (at least) one key for each component was suggested in [KY02b], but later
dismissed by the authors in [KY06] as ineffective for the black-box setting, since it cannot prevent cropping of the
plaintext once it has been decrypted. However, we believe their critique to be misleading, since traitor strategies in
which the pirate decoder tampers with the decrypted plaintexts are dealt with the use of the resemblance relationR
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(see discussion in Section 3), while AONT’s prevent the pirate from learning anything about the plaintext if even a
single block cannot be decrypted.

For the sake of clarity, we first describe the scheme without explicitly mentioning the AONT pre-processing,
and later discuss the details regarding the use of AONT’s.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible bilinear map e :
G1 × G1 → G2. Generate an (ε, t, n, v)-collusion-secure code C = {ω(1), . . . , ω(n)}.

Step 2a: Generate v independent copies of the 2-user scheme described in Section 4.1 (call these copies the
special schemes). In particular, for j = 1, . . . , v, let Pj be a generator of G1; pick random elements
aj , bj , cj ∈ Z∗q , and set Qj

.= ajPj , Rj
.= bjPj , hj

.= e(Pj , cjPj). Also, for j = 1, . . . , v, compute
linearly independent vectors (αj,0, βj,0), (αj,1, βj,1) ∈ Z2

q such that bjαj,σ + ajβj,σ = cj mod q, for
σ ∈ {0, 1}.

Step 2b: Generate one more independent copy of the 2-user scheme of Section 4.1, in which we additionally
select v values for h (call this the shared scheme). At a high level, the shared scheme can be thought
of as v parallel copies of the 2-user scheme of Section 4.1, sharing the same values P , Q and R. More
precisely, draw P

R← G1, a, b R← Z∗q , and set Q .= aP , and R .= bP ; then, for each j = 1, . . . , v, select
c̄j ∈ Z∗q and set h̄j

.= e(P, c̄jP ). Also, for each j = 1, . . . , v, compute two linearly independent vectors
(ᾱj,0, β̄j,0), (ᾱj,1, β̄j,1) in Z2

q such that bᾱj,σ + aβ̄j,σ = c̄j mod q, for σ ∈ {0, 1}.
Step 2c: The master secret key msk of the security manager is set to be:

((aj , bj , (αj,0, βj,0, αj,1, βj,1))j=1,...,v, a, b, (ᾱj,0, β̄j,0, ᾱj,1, β̄j,1)j=1,...,v)

Step 3: For j = 1, . . . , v and σ ∈ {0, 1}, letAj,σ
.= αj,σRj ,Bj,σ

.= βj,σPj , Āj,σ
.= ᾱj,σR and B̄j,σ

.= β̄j,σP .
Choose a universal hash function H : G2 → {0, 1}κ, and set pk to:6

(H, (Pj , Qj , Rj , Aj,0, Bj,0, Aj,1, Bj,1), P,Q,R, (Āj,0, B̄j,0, B̄j,1))

for all j = 1, . . . , v. The associated message space isM .= ({0, 1}κ)v.
Reg: For each user i, the security manager first retrieves the corresponding codeword ωi ∈ C and sets his/her

secret key to: ski
.= ((α

j,ω
(i)
j

)j=1,...,v, (ᾱj,ω
(i)
j

)j=1,...,v). Notice that, for j = 1, . . . , v, it holds that:

cjPj = α
j,ω

(i)
j

Rj + β
j,ω

(i)
j

Qj and hence hj = e(Pj , Aj,ω
(i)
j

) · e(Qj , Bj,ω
(i)
j

),

c̄jP = ᾱ
j,ω

(i)
j

R+ β̄
j,ω

(i)
j

Q and hence h̄j = e(P, Ā
j,ω

(i)
j

) · e(Q, B̄
j,ω

(i)
j

).

Enc: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈M as follows:

First, select ` R← {1, . . . , v} and k`
R← Zq, and compute the special component of the ciphertext (U`, V`,W`) ∈

G2 × G1 × {0, 1}κ, where U`
.= e(P`, R`)k` , V .= k`Q` and W`

.= m(`) ⊕H(hk`
` ).

Then, select k R← Zq, and compute the remaining pieces of the ciphertext as: (U, V,W1, . . . ,W`−1,
W`+1, . . . ,Wv), where U .= e(P,R)k, V .= kQ, and Wj

.= m(j) ⊕ H(h̄k
j ), for j = 1, . . . , v, j 6= `.

The ciphertext is set to be the tuple ψ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉.
Dec: Given a ciphertext ψ = 〈`, U`, V`, U, V,W1, . . . ,Wv〉 ∈ Z × (G2 × G1)2 × M, ui computes for each

j = 1, . . . , v, j 6= `:

hk`
` = (U`)

α
`,ω

(i)
` · e(V`, B`,ω

(i)
`

) and h̄k
j = (U)

ᾱ
j,ω

(i)
j · e(V, B̄

j,ω
(i)
j

)

recovers m(`) = W` ⊕ H(hk`
` ) and m(j) = Wj ⊕ H(h̄k

j ) (for j ∈ {1, . . . , v} \ {`}) and outputs m .=
(m(1)‖ . . . ‖m(v)).

6 The shared scheme is not used for tracing, so Āj,1 can be safely omitted (Āj,0 is included only so that h̄j can be computed.)
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Trace: Given pk, anybody can extract the “traitor codeword” ω̂ .= (ω̂(1), . . . , ω̂(v)) ∈ {0, 1}v from a decoder D
by makingO(v) queries toD. At a high level, the idea is to iteratively derive each ω̂(`) by feedingD with an in-
valid ciphertext that looks valid in the “shared” components, but is actually a probe (in the sense of Section 4.3)
on the `-th “special” component. In this way, ifD contains only one of the two user-keys for the `-th “special”
two-user component (say, α`,τ (`)), its reply will reveal the value of τ (`). More in detail, to extract τ (`) from

D, Trace queries D with ciphertexts of the form ψ̂(`) .= 〈`, Û`, V̂`, U
(`), V (`),W

(`)
1 , . . . , Ŵ

(`)
` , . . . ,W

(`)
v 〉,

where k`, k
′
`, k

(`) R← Zq, m̂(`) = m̂
(`)
1 , . . . , m̂(`)

v is drawn at random from M, σ(`) is a random bit,
W

(`)
j

.= m̂
(`)
j ⊕H(hk(`)

j ) for each j = 1, . . . , v, j 6= `, and

Û`
.= e(P`, R`)k′` V̂`

.= k`Q` U (`) .= e(P,R)k(`)
V (`) .= k(`)Q

Ŵ
(`)
`

.= m̂
(`)
` ⊕H(e(P`, A`,τ (`))k′` · e(V̂`, B`,τ (`))).

Let m∗(`) .= (m∗(`)
1 ‖ . . . ‖m∗(`)

v ) be the plaintext output by D when fed with the ciphertext ψ̂(`). If
R(m̂(`),m∗(`)) = 1, then set ω̂(`) = σ(`); otherwise, pick fresh random k`, k

′
`, k

(`) from Zq, m̂(`) fromM,
σ(`) from {0, 1}, and repeat, until eitherR(m̂(`),m∗(`)) = 1, or the iteration has failed some fixed polynomial
number of time, in which case ω̂(`) is set arbitrarily.
After this process has been repeated for ` = 1, . . . , v, the resulting “traitor codeword” ω̂ is handed to the tracer,
who (knowing the random coins rC used in generating C) can run it through the tracing algorithm T (rC , ·) of
the collusion-secure code C, thus obtaining a value in {1, . . . , n, 0}, which is the output of Trace.

Remark 15. Since the Trace algorithm needs msk only in the off-line phase, which does not access the pirate
decoder and is much less computation-intensive,7 our multi-user scheme supports local public traceability.

Remark 16. We bound the number of trials that Trace performs to extract each bit ω̂(`) because a pirate decoder
holding both keys for position ` could cause the testR(m̂(`),m∗(`)) = 1 to fail with probability 1. A suitable value
for this bound is O(1/pD), where pD is the success probability (over random valid ciphertexts) of the decoder
under tracing, which can be efficiently estimated using Chernoff bounds.

Remark 17. Notice that the size of the message blocks can be shrunk to any κ′ ≤ κ, by choosing a universal hash
functionH : G2 → {0, 1}κ

′
. This is possible as long as κ′ > log v+log(1/ε) = O(log t+log log(n/ε)+log(1/ε)),

which ensures that, during tracing, the probability of a hash collision in any of the v components of the scheme is
bounded by ε. For a typical choice of parameters (n = 230, ε = 2−30, t = 30), κ′ can be chosen as low as 64 bits.

Pre-Processing Messages with AONT’s. An AONT is an efficient, unkeyed, randomized transformation, with the
property that it is hard to invert unless the entire output is known. (For a formal definition, see [Boy99,CDH+00].)
As for specific instantiations, Boyko showed in [Boy99] that the Optimal Asymmetric Encryption Padding
(OAEP)[BR94] can be proven secure as an AONT in the Random Oracle Model. In [CDH+00], Canetti et al.
described constructions in the standard model based on the notion of Exposure-Resilient Functions.

For our purposes, it suffices to think of an AONT as a length-preserving algorithm AONT(m; r), where m ∈
({0, 1}κ)v−1 is the message to be processed and r is an additional random value, of the same length as each

message block i.e., |r| = κ. In what follows, we denote by M R← AONT(m) the process of selecting a random r
from {0, 1}κ and setting M ← AONT(m; r). The resulting AONT-transformed message M = (M1, . . . ,Mv) is
an element of ({0, 1}κ)v, so that it can be encrypted with the Enc algorithm described above. We can thus define
a multi-user scheme with AONT pre-processing by modifying the Enc and Dec algorithms as:

Enc′(m) .= Enc(AONT(m)) Dec′(ψ) .= AONT−1(Dec(ψ))

Notice that the use of AONT pre-processing in the full-blown scheme implies an expansion in the message size by
roughly a factor 1 + 1/v, which still results in an asymptotical unitary ciphertext-to-plaintext ratio.

7 For the scheme of [Tar03], for example, such computation consists just of a matrix-vector multiplication.
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4.5 Indistinguishability under Chosen-Plaintext Attack

In this section, we assess the security of the multi-user scheme of Section 4.4. (For lack of space, we defer all
proofs for this section to Appendix D.)

We start by verifying the intuition that AONT pre-processing does not hurt security:

Lemma 18. If the multi-user scheme without AONT pre-processing is secure w.r.t. indistinguishability under
chosen-plaintext attack, then the multi-user scheme with AONT pre-processing is secure w.r.t. the same notion.

Next, we observe that the security of the multi-user scheme from Section 4.4 can be reduced (via a hybrid argument)
to the security of the two-user scheme from Section 4.1:

Lemma 19. If our two-user scheme is secure w.r.t. indistinguishability under chosen-plaintext attack, then our
multi-user scheme without AONT pre-processing is secure w.r.t. the same notion.

In light of Theorem 9, our main security theorem follows immediately from Lemmata 18 and 19:

Theorem 20. Under the DBDH assumption for (G1,G2), the scheme in Section 4.4 is secure w.r.t. indistinguisha-
bility under chosen-plaintext attack.

4.6 Traceability

Similarly to the case of the 2-user scheme of Section 4.1, the traceability of our multi-user scheme (with AONT
pre-processing) is based on the notions of valid and probe ciphertexts:

Definition 21. Let ` ∈ [1, v], σ ∈ {0, 1}, m̂ ∈ M, M̂ = (M̂1, . . . , M̂v)
R← AONT(m̂), Û` ∈ G2, V̂` ∈ G1,

k ∈ Zq, U = e(P,R)k, V = kQ, Wj = M̂j ⊕H(hk
j ) (j = 1, . . . , v, j 6= `), Ŵ` = M̂` ⊕H(Ûα`,σ

` e(V̂`, B`,σ)),
and ψ̂ = 〈`, Û`, V̂`, U, V,W1, . . . , Ŵ`, . . . ,Wv〉. We say that the ciphertext ψ̂ is:

– valid, if Û` = e(P`, R`)k` , V̂` = k`Q`, for some k` ∈ Zq;
– (`, σ)-probe, if Û` = e(P`, R`)k′` , V̂` = k`Q`, for distinct k`, k

′
` ∈ Zq.

Our analysis is organized as follows. Let T denote the set of indices of the t traitors. Lemma 22 proves the
computational indistinguishability of valid ciphertexts vs. (`, τ `)-probes when only the τ ` subkey is known for
position `. It follows (Corollary 23) that pirate decoders must decrypt such (`, τ `)-probes correctly (w.r.t. the
chosen resemblance relation). Lemma 24 then shows that instead (`, 1− τ `)-probes cannot be properly decrypted,
and Lemma 25 combines Corollary 23 and Lemma 24 to argue that the chances that the `-th stage of tracing fails
to extract the correct bit ω̂(`) = τ ` from D are negligible, which implies the overall traceability of our scheme
(Theorem 26).

Lemma 22 (Indistinguishability of Valid vs. Probe Ciphertexts). Under the DBDH assumption for (G1,G2),
given the public key pk = (q, G1, G2, e, H , Pj , Qj , Rj , (Aj,0, Bj,0, Aj,1, Bj,1)j=1,...,v, P,Q,R, (Āj,0, B̄j,0,
B̄j,1)j=1,...,v) and the secret keys ski

.= ((α
j,ω

(i)
j

)j=1,...,v, (ᾱ
j,ω

(i)
j

)j=1,...,v) for each i ∈ T , it is infeasible to

distinguish valid ciphertexts from (`, τ `)-probes, if the codewords of all traitors in T have bit τ ` at position `.

Proof. Since the `-th “special” sub-schemes is completely independent from the rest of our construction, the thesis
follows as a simple reduction to Lemma 11. ut

Corollary 23. Let D, R be the pirate decoder and resemblance relation output by a traitor strategy A based on
the user keys of the traitors in T , such that pD is non-negligible and pR is negligible (cf. Definition 8). Assume the
codewords of all the traitors in T have bit τ ` at position `, and let ψ̂ be an (`, τ `)-probe for a message m̂ R←M.

Under the DBDH assumption, p̂D
.= Pr[R(m̂,m∗) = 1 | m∗ R← D(ψ̂)] is non-negligible.

Proof. Reduces to Lemma 22 exactly as Corollary 12 reduces to Lemma 11.
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Lemma 24. Replacing ψ̂ with an (`, 1−τ `)-probe in the setting of Corollary 23, Pr[R(m̂,m∗) = 1] is negligible,
if the AONT employed in the system is secure.

Proof. The argument described in the proof of Lemma 13 implies that the AONT-transformed message block M̂` is
computationally hidden from the pirate decoder’s view. By the properties of AONT’s, the whole original message
m̂ is then also computationally hidden from D, so that in fact m̂ is just a random message independent from the
output m∗ of D, and henceR(m̂,m∗) = 1 holds with probability pR, which is negligible. ut

Lemma 25. Consider the `-th stage of the Trace algorithm, when the tracer queries the decoder D with (`, σ)-
probes for random σ ∈ {0, 1}. If all codewords of the traitors in T have bit τ ` in the `-th position, then the `-th
stage will terminate setting ω̂` = 1− τ ` with negligible probability.

Proof. The assumption thatD does not contain both keys for position ` implies, by Corollary 23, that the `-th stage
of Trace will on average terminate after 2/pD queries toD. Upon termination, Trace’s output will be wrong only
if it happens thatD replies to an (`, 1− τ `)-probe ψ̂ with an m∗ satisfyingR(m̂,m∗) = 1, which by Corollary 23,
Lemma 24, and Bayes’ theorem is easily seen to equal pR/(pD + pR), which is negligible. ut

Theorem 26. Under the DBDH assumption for (G1,G2), the multi-user Trace algorithm from Section 4.4 has a
negligible traceability error.

Proof. Let ω̂ = (ω̂(1), . . . , ω̂(v)) be the “traitor codeword” recovered at the end of the publicly traceable phase of
Trace (cf. Section 4.4). By the union bound, Lemma 25 implies that ω̂ will be correct in all positions ` where all
traitors show the same bit, except with negligible probability. By the collusion resistance of the code C underlying
the key assignment of Setup, the codeword-tracing algorithm T (cf. Definition 4) will then be able to tie such
traitor codeword ω̂ to the identity of one of the traitors in T (except with negligible probability ε), as required. ut

Remark 27. As noted above, by employing AONT’s, the security and tracing capabilities of our multi-user scheme
follow almost directly from those of the embedded “special” sub-scheme. In fact, even if we were to suppress the
shared sub-scheme (e.g., by setting Wj = Mj , for j = 1, . . . , v, j 6= `), the multi-user scheme would still be
secure and tracing would still be possible (thanks also to the random rotation of the special position ` between
1 and v). Using the shared sub-scheme, however, reinforces the semantic security of the scheme, though at the
cost of a greater computational load, due to the larger number of pairing computations needed for encryption and
decryption.

5 Space and Time Parameters in a Concrete Instantiation

Existing constructions of constant-rate traitor tracing schemes (including ours) are based on the use of collusion-
secure fingerprint codes8 [BS98,Tar03], and in particular are applicable for messages of size proportional to the
length of the code, which in the case of the optimal codes due to Tardos [Tar03] is O(t2(log n + log 1

ε )). For
a typical choice of parameters, e.g. user population n = 230, tracing error probability ε = 2−30 and traceable
threshold t = 30, the resulting code length is about 5 million bits. Instantiating our construction with such codes
yields a scheme with plaintext and ciphertext of size 41 MBytes. (The ciphertext size is equal to the plaintext size,
as the additive overhead is less than 1 KByte.) These values are well within the range of multimedia applications,
since 41 MBytes roughly corresponds to 33 seconds of DVD-quality (high-resolution) video, 4 minutes of VCD-
quality (low-resolution) video and 25–50 minutes of audio. The resulting public and secret keys roughly require
respectively 1.5GByte and 206 MBytes. Although quite large, such a public key could be stored in commodity
hardware (e.g., it would fit in the hard disk of an iPod), whereas user secret keys could be kept in Secure Digital
memory cards, like those commonly available for PDAs.

Another important issue for a concrete instantiation is the rate at which encrypted content can be processed.
In our scheme, decryption requires one paring per 1024 bits of content, which, using the PBC Library [Lyn]
on a desktop PC, takes approximately 16 msec. However, in our context, the pairings to be computed all have

8 [PST06] actually employs IPP codes, but similar considerations on code length and message size apply to such codes as well.



13

one of their two input-points in common: as reported in [BBS04], pre-processing in similar settings more than
halves the computation time, so that one easily gets in the order of 128 pairings/sec, corresponding to a near-
CD-quality audio rate of 128 Kbits/sec. More specialized software implementations [BGhCS04] of the pairing
operation can further reduce its computational cost to around 3 msec; whereas hardware implementations, even
under conservative assumptions on the hardware architecture [KMPB05], can obtain running time below 1 msec,
attaining the 1Mbits/sec data rate needed for VCD-quality video.

6 Conclusion

We present the first public-key traitor tracing scheme with efficient black-box tracing and optimal transmission
rate. Our treatment improves the standard modeling of black-box tracing by additionally accounting for pirate
strategies that attempt to escape tracing by purposedly rendering the transmitted content at lower quality (e.g. by
dropping every other frame from the decrypted video-clip, or skipping few seconds from the original audio file).
We also point out and resolve an issue in the black-box traitor tracing mechanism of both the previous schemes
in this setting [KY02b,CPP05]. Our construction is based on the decisional bilinear Diffie-Hellman assumption,
and additionally provides the same features of public traceability as (a repaired version of) [CPP05], which is less
efficient and requires non-standard assumptions for bilinear groups.
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A Bilinear Maps and Intractability Assumptions

A.1 Bilinear Maps

Let G1 and G2 be two groups of order q, for some large prime q. In our construction, we will make use of a bilinear
map e : G1 × G1 → G2, satisfying the following properties:

Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and all a, b ∈ Zq;
Non-degeneracy: The map does not send all pairs in G1 × G1 to the unit in G2;
Computable: There is an efficient algorithm to compute e(P,Q) for any elements P,Q ∈ G1.

A bilinear map satisfying the three above properties is said to be an admissible bilinear map. Throughout the
paper, we view G1 as an additive group and G2 as a multiplicative group. We remark that since G1,G2 are groups of
prime order and e is non-degenerated, e(P, P ) generates G2 whenever P generates G1. It follows that e(P, ·) is an
isomorphism from G1 into G2. Typical examples of constructions of admissible bilinear maps satisfying the above
properties are based on the modified Weil and Tate pairings (cf. e.g., [BF99]).

A.2 Assumptions for Our Scheme

DBDH (the decisional bilinear Diffie-Hellman problem in (G1,G2)):
Given (P, aP, bP, cP, h) for random P ∈ G1, a, b, c ∈ Zq and h ∈ G2, output yes if h = e(P, P )abc and no
otherwise.
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Definition 28 (DBDH Assumption). The DBDH problem is εDBDH-hard in (G1,G2) if, for all probabilistic
polynomial-time algorithms A, we have

|Pr[A(P, aP, bP, cP, h) = yes | P R← G1, a, b, c
R← Zq, h = e(P, P )abc]−

Pr[A(P, aP, bP, cP, h) = yes | P R← G1, a, b, c
R← Zq, h

R← G2]| < εDBDH

where the probability is over the random selection of P from G1, of a, b, c from Zq, and over A’s random coins.

A.3 Assumption for the Schemes of [KY02b]

DDH (the decisional Diffie-Hellman problem in G):
Given (P, aP, bP, S) for random P ∈ G, a, b ∈ Zq and S ∈ G, output yes if S = abP and no otherwise.

A.4 Assumptions for the Schemes of [CPP05]

DBDH2-E (the extended decisional bilinear Diffie-Hellman problem):
Given (P, aP, bP, cP, ab2P, h) for random P ∈ G1, a, b, c ∈ Zq and h ∈ G2, output yes if h = e(P, P )cb2

and no otherwise.
DBDH1-M (the modified decisional bilinear Diffie-Hellman problem in G1):

Given(P, aP, bP, S) for random P ∈ G1, a, b ∈ Zq and S ∈ G1, output yes if S = ab2P and no otherwise.

B The Public-Key Traitor Tracing Schemes of [KY02b] and [CPP05]

B.1 The Two-User Sub-Scheme of [KY02b]

Setup: Given a security parameter 1κ, the algorithm works as follows:
Step 1: Generate a κ-bit prime q and a group G of order q in which the DDH problem is difficult. Let P be a

generator of G.9

Step 2: Pick random elements a, c ∈ Z∗q , and set Q .= aP , Z .= cP . The private key of the security manager
is set to be the pair msk

.= (a, c).
Step 3: Choose a universal hash function H : G → {0, 1}κ, and set the public key as pk

.= (q, G, H , P , Q,
Z). The message space isM .= {0, 1}κ.

Reg: The security manager selects two linearly independent vectors (α0, β0), (α1, β1) ∈ Z2
q such that ασ+aβσ =

c mod q, for σ ∈ {0, 1}. This implies: Z = cP = ασP + βσQ, for σ ∈ {0, 1}. The secret key of user σ is
then set to be skσ

.= (ασ, βσ), for σ ∈ {0, 1}.
Enc: Given pk, anybody can encrypt a message m ∈M by first selecting a random k ∈ Zq and then creating the

ciphertext ψ .= 〈U, V,W 〉 ∈ G2 ×M where

U
.= kP, V

.= kQ, W
.= m⊕H(kZ)

Dec: Given a ciphertext ψ = 〈U, V,W 〉 ∈ G2 ×M, user σ computes kZ = ασU + βσV and recovers m =
W ⊕H(kZ).

Trace: To trace a decoder D back to the identity of the traitor, the security manager picks two distinct random
values k, k′ ∈ Zq, along with a random m̂ ∈M, and feeds D with the “illegal” ciphertext ψ̂ .= 〈k′P, kQ, m̂〉.
If the output ofD is m̂⊕H(k′ασP +kβσQ), then the algorithm returns the identity σ as the traitor; otherwise
it outputs 0.

In [KY02b], the authors show that the above two-user scheme is secure and traceable (for up to 1 traitor) in the
sense of Definitions 7 and 8 under the DDH assumption (cf. Appendix A.3).

9 Even though [KY02b] used the multiplicative notation, we use here the additive notation for the sake of consistency with the rest of the
paper (cf. Footnote 10).
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B.2 The Multi-User Scheme of [KY02b]

Setup: Given security parameters 1κ, 1t and ε, the algorithm works as follows:
Step 1: Generate a κ-bit prime q and a group G in which the DDH problem is difficult.10 Generate an

(ε, t, n, v)-collusion-secure code C = {ω(1), . . . , ω(n)} over {0, 1}.
Step 2: For each j = 1, . . . , v, let Pj be a generator of G, pick random aj , cj ∈ Z∗q , and set Qj

.= ajPj ,
Zj

.= cjPj . For each j = 1, . . . , v, compute two linearly independent vectors (αj,0, βj,0), (αj,1, βj,1) in
Z2

q such that αj,σ + aβj,σ = cj mod q, for σ ∈ {0, 1}. The private key of the security manager is set to
be msk

.= (aj , αj,0, βj,0, αj,1, βj,1)j=1,...,v.
Step 3: Choose a universal hash function H : G → {0, 1}κ, and set the public key to pk

.= (q, G, H , (P1,
Q1, Z1), . . ., (Pv, Qv, Zv)). The message space isM .= ({0, 1}κ)v.

Reg: For each user i, the security manager first retrieves the corresponding codeword ω(i) ∈ C, and then, for each
j = 1, . . . , v, gives ui one of the two pairs (αj,0, βj,0) or (αj,1, βj,1), according to the value of ω(i)

j (the j-th
bit of the codeword ω(i)). The secret key of user i is then set to be ski

.= (α
j,ω

(i)
j

, β
j,ω

(i)
j

)j=1,...,v. Notice that,

for j = 1, . . . , v, Zj = cjPj = α
j,ω

(i)
j

Pj + β
j,ω

(i)
j

Qj .

Enc: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈ M by first selecting random
k1, . . . , kv ∈ Zq and then creating a ciphertext ψ .= (〈U1, V1,W1〉, . . . , 〈Uv, Vv,Wv〉) ∈ (G2 × {0, 1}κ)v

where Uj
.= kjPj , Vj

.= kjQj and Wj
.= m(j) ⊕H(kjZj), j = 1, . . . , v.

Dec: Given a ciphertext ψ = (〈U1, V1,W1〉, . . . , 〈Uv, Vv,Wv〉), user i computes kjZj = α
j,ω

(i)
j

Uj + β
j,ω

(i)
j

Vj

and recovers m(j) = Wj ⊕H(kjZj), for j = 1, . . . , v.
Trace: To trace a decoder D back to the identity of one of the traitors, the security manager prepares an illegal

ciphertext ψ̂ .= (ψ̂1, . . . , ψ̂v), where each ψ̂j is constructed as in the tracing algorithm from Appendix B.1

(i.e., ψ̂j
.= 〈k′jPj , kjQj , m̂j〉, for random kj , k

′
j

R← Zq and m̂j
R← {0, 1}κ). Let m .= (m(1)‖ . . . ‖m(v)) be the

plaintext output by D when fed with the ciphertext ψ̂.
The security manager forms a “traitor codeword” ω̂ .= (ω̂(1), . . . , ω̂(v)) ∈ {0, 1, ‘?’}v, where each ω̂(j) is
derived from m(j) as in the tracing algorithm for the two-user scheme (i.e., ω̂(j) .= σj if m(j) = m̂j ⊕
H(k′jαj,σjPj + kjβj,σjQj) (for σj = {0, 1}), or ω̂(j) .= ‘?’ otherwise).
At this point, the “traitor codeword” ω̂ is run through the tracing algorithm T (rC , ·) of the collusion-secure
code C (where rC are the random coins used by the security manager in generating C). Finally, Trace outputs
whichever value in {1, . . . , n, 0} returned by T (rC , ω̂).

B.3 The Two-User Sub-Scheme of [CPP05]

Setup: Given a security parameter 1κ, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible bilinear map e :
G1 × G1 → G2. Let P be a generator of G1 and set g .= e(P, P ).

Step 2: Pick random elements a, c ∈ Z∗q , and set Q .= aP , h .= gc. The private key of the security manager
is set to be the pair msk

.= (a, c).
Step 3: The security manager selects two linearly independent vectors (α0, β0) and (α1, β1) in Z2

q such that
ασ + aβσ = c mod q, for σ ∈ {0, 1}. It chooses a universal hash function H : G2 → {0, 1}κ, and set
the public key of the scheme to be the tuple pk

.= (q,G1,G2, e,H, g, P,Q, h, α0P, β0P, α1P, β1P ). The
message space isM .= {0, 1}κ.

Reg: The secret key of user σ is set to be skσ
.= (ασ). Notice that: cP = ασP + βσQ and hence e(P, cP ) =

e(P, ασP ) · e(Q, βσP ) = e(P,Aσ) · e(Q,Bσ), for σ ∈ {0, 1}.
Enc: Given pk, anybody can encrypt a message m ∈M by first selecting a random k ∈ Zq and then creating the

ciphertext ψ .= 〈U, V,W 〉 ∈ G2
1 ×M where

U
.= kP, V

.= k2Q, W
.= m⊕H(hk2

)
10 Even though [KY02b] used the multiplicative notation, we use here the additive notation for the sake of consistency with the rest of the

paper. Notice, however, that G should not be identified with the group G1 used elsewhere in this paper, and in particular G should not be
equipped with a bilinear map, for that would violate the required hardness of the DDH problem in G.
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Dec: Given a ciphertext ψ = 〈U, V,W 〉, user σ computes hk2
= e(U,ασU) · e(V,Bσ) and recovers m =

W ⊕H(hk2
).

Trace: To trace a decoder D back to the identity of the traitor, the tracer picks two distinct random values k, k′ ∈
Zq, along with a random m̂ ∈ M, and feeds D with the “illegal” ciphertext ψ̂ .= 〈k′P, k2Q, m̂〉. If the output
of D is m̂⊕H(e(ασP, P )k′2 · e(βσP,Q)k2

), then the algorithm returns the identity σ as the traitor; otherwise
it outputs 0.

In [CPP05], the above two-user scheme is proven secure and traceable (for up to 1 traitor) in the sense of
Definitions 7 and 8 under two non-standard assumptions for bilinear groups, respectively called DBDH2-E and
DBDH1-M in [CPP05] (cf. Appendix A.4).

B.4 The Multi-User Scheme of [CPP05]

We now describe the multi-user scheme11 of [CPP05], which is based on the use of bilinear maps. The key differ-
ence from the multi-user scheme of [KY02b] is the idea of proxy quantity: the security manager selects the master
secret key roughly as in [KY02b], but now some secret information is removed from the users’ secret keys and a
derived value (the proxy quantity) is lifted to the public key.

These public proxy quantities are sufficient to decrypt and contain less information about the master secret key.
This makes it (seemingly) safe to reuse the same parameters P and Q (in the public key) and the same randomness
k (in the ciphertext) for all v components of the multi-user scheme. This (seemingly) results in a significant bonus,
as it allows for considerably shorter public keys and ciphertexts.

Setup: Given the security parameters 1κ, 1t and ε, the algorithm works as follows:
Step 1: Generate a κ-bit prime q, two groups G1 and G2 of order q, and an admissible bilinear map e :
G1 × G1 → G2. Let P be a generator of G1 and set g .= e(P, P ).
Generate an (ε, t, n, v)-collusion-secure code C = {ω(1), . . . , ω(n)} over {0, 1}.

Step 2: Pick random elements a, cj ∈ Z∗q (j = 1, . . . , v), and set Q .= aP , hj
.= gcj , j = 1, . . . , v.

For each j = 1, . . . , v, compute two linearly independent vectors (αj,0, βj,0), (αj,1, βj,1) in Z2
q such

that αj,σ + aβj,σ = cj mod q, for σ ∈ {0, 1}. The private key of the security manager is set to be
msk

.= (a, (αj,0, βj,0, αj,1, βj,1)j=1,...,v).
Step 3: For j = 1, . . . , v and σ ∈ {0, 1}, let Aj,σ

.= αj,σP and Bj,σ
.= βj,σP . Choose a universal hash

function H : G2 → {0, 1}κ, and set the public key to: pk
.= (q, G1, G2, e, H , P , Q, (hj , Aj,0, Bj,0, Aj,1,

Bj,1)j=1,...,v). The message space isM .= ({0, 1}κ)v.
Reg: For each user i, the security manager retrieves the corresponding codeword ω(i) ∈ C, and sets the secret key

of user i to be: ski
.= (α

j,ω
(i)
j

)j=1,...,v. Notice that, for j = 1, . . . , v, cjP = α
j,ω

(i)
j

P + β
j,ω

(i)
j

Q and hence,

hj = e(P, cjP ) = e(P, α
j,ω

(i)
j

P ) · e(Q, β
j,ω

(i)
j

P ) = e(P,A
j,ω

(i)
j

) · e(Q,B
j,ω

(i)
j

).

Enc: Given pk, anybody can encrypt a message m = (m(1)‖ . . . ‖m(v)) ∈M by first selecting a random k ∈ Zq

and then creating a ciphertext ψ .= 〈U, V, (W1, . . . ,Wv)〉 ∈ G2
1 × M, where U .= kP , V .= k2Q and

Wj
.= m(j) ⊕H(hk2

j ), j = 1, . . . , v.
Dec: Given a ciphertext ψ = 〈U, V, (W1, . . . ,Wv)〉 ∈ G2

1 ×M, user i computes (for j = 1, . . . , v) the mask
hk2

j = e(U,α
j,ω

(i)
j

U) · e(V,B
j,ω

(i)
j

) and then recovers each m(j) as m(j) = Wj ⊕H(hk2

j ).

Trace: Although [CPP05] present a tracing algorithm only for their two-user scheme, the authors suggested
therein that their multi-user scheme inherits the tracing capabilities of [KY02b]. In particular, we sketch here
the obvious necessary modifications to the Trace algorithm in Appendix B.2: the illegal ciphertext has the
form ψ̂

.= 〈k′P, k2Q, (m̂1, . . . , m̂v)〉, where k, k′ R← Zq, and each m̂j is random in {0, 1}κ; and the “traitor
codeword” ω̂ .= (ω̂(1), . . . , ω̂(v)), is constructed from D’s response m .= (m(1)‖ . . . ‖m(v)) by defining each
ω̂(j) ∈ {0, 1, ‘?’} as in the tracing for the two-user scheme (i.e., ω̂(j) .= σj ifm(j) = m̂j⊕H(e(αj,σjP, P )k′2 ·
e(βj,σjP,Q)k2

) (for σj = {0, 1}), or ω̂(j) .= ‘?’ otherwise).

11 In [CPP05], the authors present two schemes with the same parameters. For conciseness, here we only report the second scheme, which
was claimed to also support local public traceability.
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C On the Query Complexity of Black-Box Tracing in [KY02b]

Appendix B.2 reports the multi-user scheme of [KY02b], which includes a black-box tracing algorithm making
a single query to the pirate decoder D. Below we show that such algorithm is broken, and we present a simple
traitor strategy that allows a coalition of just 2 < t users to escape tracing with probability 1. We also propose
a variation of their black-box tracing algorithm, which requires v queries but is successful in tracing up to the
desired threshold of traitors, thus suggesting that the query complexity of black-box tracing in [KY02b] is higher
than what claimed therein.

C.1 A Simple Untraceable Traitor Strategy

Consider the coalition of 2 users, which for simplicity we will suppose associated with the first two codewords
ω(1), ω(2) of C. Since ω(1) 6= ω(2), they must differ in at least one of their v bits, say the first bit.

This means that by pooling their secret keys, the two traitors can construct a pirate decoder D containing both
user-keys (α1,0, β1,0), (α1,1, β1,1) for the two-user sub-scheme associated to index 1, plus at least one user-key for
each of the remaining (v − 1) components. When given a ciphertext ψ .= 〈ψ1, . . . , ψv〉, D starts by decrypting ψ1

twice: once using (α1,0, β1,0), and then again using (α1,1, β1,1). If the two resulting plaintexts coincide, then D
decrypts the rest of ψ and output the resulting message; otherwise, D can conclude that it is being traced, and can
just output a predetermined message (e.g., the all-zero message).

Notice thatD perfectly decrypts ciphertext distributed according to Enc(pk, ·) since, by correctness of decryp-
tion, D’s “integrity” check will always pass on a valid ciphertext. Moreover, D escapes tracing with probability 1,
since the Trace algorithm of [KY02b] prepares the invalid ciphertext ψ̂ by concatenating invalid ciphertexts ψ̂j

for each of the v components of the scheme. This will result in different decryptions of ψ̂1 under (α1,0, β1,0) and
(α1,1, β1,1), and thus D will reply with a plaintext containing no information about the identities of the traitors.

C.2 The Fix

The problem with the Trace algorithm of [KY02b] is that it implicitly assumed that pirate decoders would decrypt
each component of the ciphertext independently from each other, which clearly does not need to be the case. Bear-
ing this in mind, the fix is immediate: it suffices for Trace to iteratively query the decoder with v ciphertexts, each
constructed to be invalid in just one component, but valid elsewhere. Now, the independence of the v component
sub-schemes implies that D will be unable to tell valid and invalid ciphertexts apart, unless it possesses both user-
keys for the single sub-scheme “under testing.” As a consequence, Trace will end up extracting a traitor codeword
from D with at most t unreadable marks ‘?’, and thus the tracing algorithm T (·, ·) of the collusion-secure code C
will successfully recover the identity of one of the traitor (with probability 1− ε).

C.3 Consequences for the Multi-User Scheme of [CPP05]

Being based on the techniques of [KY02b], the multi-user scheme of [CPP05] inherits the problem pointed out in
Appendix C.1. As it turns out, however, in this case the consequences are more severe. In particular, the easy fix
that we proposed for the scheme of [KY02b] in Appendix C.2 does not apply: interestingly, the higher correlation
between the parameters used in the v components of the scheme of [CPP05], which proved crucial to attain optimal
transmission rate, at the same time poses a serious impediment to black-box tracing.

Indeed, ciphertexts in the multi-user scheme of [CPP05] (cf. Appendix B.4) have the form ψ
.= 〈kP , k2Q,

(W1, . . ., Wv)〉, in which the same “randomization” values kP, k2Q are used for all the v two-user sub-schemes.
Hence, it is not possible to make the ciphertext invalid in just one component, while preserving its validity in
the remaining (v − 1) ones (which was the idea behind our fix in Appendix C.2). Therefore, it seems that the
scheme of [CPP05], as given, does not support black-box tracing. Since the notion of local public traceability is
only meaningful in the black-box setting, this also voids the claimed traceability features of the multi-user scheme
of [CPP05].

To salvage black-box tracing and local public traceability, one could modify the scheme of [CPP05] and revert
to the “parallel” composition of sub-schemes (exactly as in [KY02b]), thus “undoing” the optimization that enabled
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short ciphertexts. The resulting scheme, however, would just be a variant of [KY02b] with the same parameters,
but with the additional need of bilinear maps and reliance on non-standard bilinear-related assumptions.

As a result, it seems appropriate to regard the multi-user scheme of [CPP05] as a scheme with optimal trans-
mission rate, but with only non-black-box tracing and no public traceability features.

D Proofs from Section 4.5

D.1 Proof of Lemma 18

Lemma. If the multi-user scheme without AONT pre-processing is secure w.r.t. indistinguishability under chosen-
plaintext attack (cf. Theorem 9), then the multi-user scheme with AONT pre-processing is secure w.r.t. the same
notion.

Proof. The proof is by a straightforward reduction argument: given any efficient adversary A = (A1,A2), having
advantage ε in attacking the multi-user scheme with AONT pre-processing, we construct an adversary B, with
essentially the same running time as A’s, having the same advantage ε in attacking the multi-user scheme without
AONT pre-processing.

Adversary B just forwards A1 the public key for the scheme that it wants to attack. A1 will reply with two
messages m0

.= (m(1)
0 , . . . ,m

(v)
0 ) and m1

.= (m(1)
1 , . . . ,m

(v)
1 ) on which to be challenged. Then B applies the

all-or-nothing transform to both messages, obtaining m′
0

R← AONT(m0) and m′
1

R← AONT(m1). B then submits
m′

0 and m′
1 to its challenger, and gets back a challenge ciphertext ψ∗. Notice that ψ∗ is also a valid challenge

ciphertext for A, and so B directly forwards it to A2 as challenge (along with any state information that A1 might
have output). Finally, B outputs whichever bit b′ is returned by b.

SinceB perfectly simulates the attack game that adversaryA expects,B’s advantage against the scheme without
AONT pre-processing equals ε, completing the proof. ut

D.2 Proof of Lemma 19

Lemma. If the two-user scheme in Section 4.1 is secure w.r.t. indistinguishability under chosen-plaintext attack
(cf. Theorem 9), then the multi-user scheme in Section 4.4 is secure w.r.t. the same notion.

Proof. For the sake of clarity, in the security proof, we will follow the structural approach advocated in [Sho04].
Starting from the actual attack scenario (as defined in Definition 7), we consider a sequence of hypothetical games,
all defined over the same underlying probability space. In each game, the adversary’s view is obtained in a slightly
different way, but its distribution is maintained (computationally) indistinguishable across the games. In the last
game, it will be clear that the adversary has (at most) a negligible advantage; by the indistinguishability of any two
consecutive games, it will follow that also in the original game the adversary’s advantage is negligible.

Fix any efficient adversary A = (A1,A2), along with its random tape. Fix also the randomness used by the
challenger in the execution of the Setup and Enc algorithms, and the random bit b∗ used in creating the challenge
ciphertext ψ∗. In each game Gi, the goal of adversary is to guess such bit b∗. Let b′ be the random variable denoting
the bit output by A2 at the end of the game, and denote with Si the event that b′ = b∗ in game Gi.

Game G0. Define G0 to be the original game as described in Definition 7.

Game G1. This game is identical to game Game G0, except that the Enc algorithm in G1 is modified so that the
“special component” of the ciphertext is computed as follows:

k`
R← Zq, U` ← e(P`, R`)k` , V` ← k`Q`, W`

R← {0, 1}κ

In other words, rather than being set as W` ← m
(`)
b∗ ⊕H(hk`

` ), in game G1 W` is a random κ-bit value.
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Claim (1). |Pr[S0]−Pr[S1]| ≤ 2ε(1), where ε(1) is the advantage of some efficient adversary attacking the security
of the 2-user scheme from Section 4.1.

The proof of this is by a standard reduction argument, by which any non-negligible difference in behavior be-
tween game G0 and G1 can be used to construct an efficient adversaryB(1) successfully attacking the security of the
2-user scheme from Section 4.1. More precisely, B(1) gets in input a 2-user public key (P̃ , Q̃, R̃, Ã0, B̃0, Ã1, B̃1),
and proceeds as follows:

Setup: To create the public key for the multi-user scheme to be fed to A1, B(1) proceeds exactly according to
the corresponding key generation algorithm, except that, for the parameters corresponding to the `-th special
component,12 B(1) uses the values from the public key that it received as its own input:

P` ← P̃ , Q` ← Q̃, R` ← R̃, A`,0 ← Ã0, B`,0 ← B̃0, A`,1 ← Ã1, B`,1 ← B̃1

B(1) then sends A1 the resulting multi-user public key.
Challenge: A1 outputs two messages m0

.= (m(1)
0 ‖ . . . ‖m

(v)
0 ),m1

.= (m(1)
1 ‖ . . . ‖m

(v)
1 ) on which it wishes to

be challenged, along with some state τ to be passed to A2. Now B(1), in turn, has to choose two messages,
m̃0 and m̃1, for its own challenge. So B(1) chooses b∗ ∈ {0, 1} at random, sets m̃b∗

.= m
(`)
b∗ , and picks

m̃1−b∗
R← {0, 1}κ. At this point, B(1) is given a challenge ciphertext ψ̃ .= 〈Ũ , Ṽ , W̃ 〉, where Ũ .= e(P̃ , R̃)k̃,

Ṽ
.= k̃Q̃, h̃ = e(P̃ , Ã0) · e(Q̃, B̃0) and W̃ .= m̃b̃ ⊕H(h̃k̃). Recall that B(1)’s job is to guess the bit b̃ that was

used to create its challenge. To this end, B(1) prepares a challenge ciphertext ψ∗ for A2 by faithfully running
the Enc algorithm on the message mb∗

.= (m(1)
b∗ ‖ . . . ‖m

(v)
b∗ ), except that, for the special component, rather

than choosing a random k` and properly encrypting the message block m`
b∗ , B(1) uses the values contained in

its own challenge ψ̃:

U`
.= Ũ , V`

.= Ṽ , W`
.= W̃ .

Then, B(1) sendsA2 the challenge ciphertext ψ∗ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉 so computed, along with the
state information τ .

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}, which B(1) also gives in output as its own guess to b̃.

It should be clear by inspection that adversary B(1) ‘interpolates’ between games G0 and G1 for A, in the
sense that if b∗ = b̃, then the view of adversary A is computed exactly as in G0, whereas if b∗ = 1 − b̃, then the
computation proceeds according to G1. Thus, it holds that:

Pr[S0] = Pr[b′ = b∗ | b∗ = b̃] and Pr[S1] = Pr[b′ = b∗ | b∗ = 1− b̃].

Now, let ε(1) be adversary B(1)’s advantage in guessing b̃: ε(1) .= |Pr[b′ = b̃]− 1/2|. Splitting the probability
according to the event space partition (b∗ = b̃) ∨ (b∗ = 1− b̃), we get

Pr[b′ = b̃] = Pr[b′ = b̃ | b∗ = b̃] · Pr[b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃] · Pr[b∗ = 1− b̃]

=
1
2
(Pr[b′ = b̃ | b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃])

=
1
2
(Pr[b′ = b̃ | b∗ = b̃] + 1− Pr[b′ = 1− b̃ | b∗ = 1− b̃])

=
1
2

+
1
2
(Pr[b′ = b∗ | b∗ = b̃]− Pr[b′ = b∗ | b∗ = 1− b̃])

=
1
2

+
1
2
(Pr[S0]− Pr[S1])

It thus follows that |Pr[S0]− Pr[S1]| = 2|Pr[b′ = b̃]− 1/2| = 2ε(1), as claimed. ut
12 Notice that the value of ` is fixed within this proof, since we fixed the randomness for Enc across the games.
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Game Gi, 2 ≤ i ≤ `. This game is identical to game Game Gi−1, except that the Enc algorithm in Gi−1 is
modified so that Wi−1, rather than properly encrypting the message block m(i−1)

b∗ , is chosen as a random κ-bit
value:

Wi−1
R← {0, 1}κ

Claim (i). |Pr[Si−1] − Pr[Si]| ≤ 2ε(i), where ε(i) is the advantage of some efficient adversary attacking the
security of the 2-user scheme from Section 4.1.

Again, we will prove the claim by showing how any non-negligible difference in behavior between game Gi−1

and Gi can be used to construct an efficient adversary B(i) successfully attacking the security of the 2-user scheme
from Section 4.1.

More precisely, B(i) gets in input a 2-user public key (P̃ , Q̃, R̃, Ã0, B̃0, Ã1, B̃1), and proceeds as follows:

Setup: To create the public key for the multi-user scheme to be fed to A1, B(i) proceeds exactly according to the
corresponding key generation algorithm, except that for the parameters corresponding to the “shared scheme,”
B(i) bases its computations on the values included in the 2-user public key that it received as its own input:

P ← P̃ , Q← Q̃, R← R̃
Āi,0 ← Ã0, B̄i,0 ← B̃0, Āi,1 ← Ã1, B̄i,1 ← B̃1

β̄j,0
R← Zq, B̄j,0 ← β̄j,0P̃ (j = 1, . . . , v, j 6= i)

ᾱj,0
R← Zq, Āj,0 ← ᾱj,0R̃ (j = 1, . . . , v, j 6= i)

β̄j,1
R← Zq, B̄j,1 ← β̄j,1P̃ (j = 1, . . . , v, j 6= i)

Āj,1 ← Āj,0 + β̄j,0Q̃− β̄j,1Q̃ (j = 1, . . . , v, j 6= i)

(Notice that the last set of positions guarantee that, for all values of j, it holds that:

e(P, Āj,0) · e(Q, B̄j,0) = e(P, Āj,1) · e(Q, B̄j,1),

so that in fact we can define h̄j
.= e(P, Āj,σ) ·e(Q, B̄j,σ), for σ ∈ {0, 1}, j = 1, . . . , v, as in the actual Setup

algorithm for the multi-user scheme (cf. Section 4.4).)

B(1) then sends A1 the resulting multi-user public key.
Challenge: A1 outputs two messages m0

.= (m(1)
0 ‖ . . . ‖m

(v)
0 ),m1

.= (m(1)
1 ‖ . . . ‖m

(v)
1 ) on which it wishes to

be challenged, along with some state τ to be passed to A2. Now B(1), in turn, has to choose two messages,
m̃0 and m̃1, for its own challenge. So B(1) chooses b∗ ∈ {0, 1} at random, sets m̃b∗

.= m
(i−1)
b∗ , and picks

m̃1−b∗
R← {0, 1}κ. At this point, B(1) is given a challenge ciphertext ψ̃ .= 〈Ũ , Ṽ , W̃ 〉, where Ũ .= e(P̃ , R̃)k̃,

Ṽ
.= k̃Q̃, h̃ = e(P̃ , Ã0) · e(Q̃, B̃0) and W̃ .= m̃b̃ ⊕H(h̃k̃). Recall that B(1)’s job is to guess the bit b̃ that was

used to create its challenge. To this end, B(1) prepares a challenge ciphertext ψ∗ for A2 as follows:

k`
R← Zq, U` ← e(P`, R`)k` , V` ← k`Q`, W`

R← {0, 1}κ
U ← Ũ , V ← Ṽ , Wi−1 ← W̃

Wj
R← {0, 1}κ, (j = 1, . . . , i− 2)

Wj ← m
(j)
b∗ ⊕H(Ũ ᾱj,0 · e(Ṽ , B̄j,0)), (j = i, . . . , v, j 6= `)

Notice that, for j = i, . . . , v, j 6= `, theWj values computed by B(i) are proper encryptions of the correspond-
ing m(j)

b∗ , since:

Wj ←m
(j)
b∗ ⊕H(Ũ ᾱj,0 · e(Ṽ , B̄j,0))

= m
(j)
b∗ ⊕H((e(P̃ , R̃)k̃)ᾱj,0 · e(k̃Q̃, B̄j,0))

= m
(j)
b∗ ⊕H((e(P̃ , ᾱj,0R̃) · e(Q̃, B̄j,0))k̃)

= m
(j)
b∗ ⊕H((e(P, Āj,0) · e(Q, B̄j,0))k̃)

= m
(j)
b∗ ⊕H(h̄k̃

j ).
12 Clarify that ` has been fixed when we fixed the randomness for Enc across the games.
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At this point, B(i) sends A2 the challenge ciphertext ψ∗ .= 〈`, U`, V`, U, V,W1, . . . ,Wv〉 so computed, along
with the state information τ .

Guess: Algorithm A2 outputs a guess b′ ∈ {0, 1}, which B(1) also gives in output as its own guess to b̃.

Before arguing about the success probability of B(i), notice that, by the definitions of games Gi−1 and Gi, the
challenge ciphertexts that adversary A is given in both games have the same overall structure: they are completely
random in the first fewWj components (as well as in the special componentW`), whereas they are properly formed
in the last few Wj components, j 6= `. The only difference is in the position where such “transition” from “random
Wj” to “properly formed Wj” takes place: between indices (i− 2, i− 1), in the case of game Gi−1; and between
indices (i− 1, i),13 in the case of game Gi−1.

It should then be clear, by the way adversary B(i) prepares the challenge ciphetext ψ∗ for adversaryA, that B(i)

effectively ‘interpolates’ between games Gi−1 and Gi for A, in the sense that: if b∗ = b̃, then Wi−1 is properly
formed, and the view of adversary A is computed exactly as in game Gi−1; whereas if b∗ = 1 − b̃, then Wi−1 is
completely random, so that A’s view is distributed as in game G1. It thus follows that:

Pr[Si−1] = Pr[b′ = b∗ | b∗ = b̃] and Pr[Si] = Pr[b′ = b∗ | b∗ = 1− b̃].

Now, let ε(i) be adversary B(i)’s advantage in guessing b̃: ε(i) .= |Pr[b′ = b̃] − 1/2|. Splitting the probability
according to the event space partition (b∗ = b̃) ∨ (b∗ = 1− b̃), we get

Pr[b′ = b̃] = Pr[b′ = b̃ | b∗ = b̃] · Pr[b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃] · Pr[b∗ = 1− b̃]

=
1
2
(Pr[b′ = b̃ | b∗ = b̃] + Pr[b′ = b̃ | b∗ = 1− b̃])

=
1
2
(Pr[b′ = b̃ | b∗ = b̃] + 1− Pr[b′ = 1− b̃ | b∗ = 1− b̃])

=
1
2

+
1
2
(Pr[b′ = b∗ | b∗ = b̃]− Pr[b′ = b∗ | b∗ = 1− b̃])

=
1
2

+
1
2
(Pr[Si−1]− Pr[Si])

It thus follows that |Pr[Si−1]− Pr[Si]| = 2|Pr[b′ = b̃]− 1/2| = 2ε(i), as claimed. ut

Game Gi, ` + 1 ≤ i ≤ v. This game is identical to game Game Gi−1, except that the Enc algorithm in Gi−1 is
modified so that Wi, rather than properly encrypting the message block m(i)

b∗ , is chosen as a random κ-bit value:

Wi
R← {0, 1}κ

Claim (i). |Pr[Si−1] − Pr[Si]| ≤ 2ε(i), where ε(i) is the advantage of some efficient adversary attacking the
security of the 2-user scheme from Section 4.1.

The proof of this is by a reduction argument completely analogous to the one used in proving the claims for
the cases 2 ≤ i ≤ `, the only difference being a notational one, since now the reduction will embed the challenge
from the 2-user scheme into the component Wi (rather than Wi−1).14 ut

To conclude the proof, observe that, in game Gv, all the Wj components in the challenge ciphertext ψ∗ .=
〈`, U`, V`, U, V,W1, . . . ,Wv〉 are just drawn at random from {0, 1}κ, so that no information about the random bit
b∗ is present in adversary A’s view. It follows that the probability of a correct guess b′ = b∗ by A in game Gv is
just 1/2, i.e.:

Pr[Sv] =
1
2

13 For i = `, the transition is actually between indices (`− 1, ` + 1), since we are dealing with the special component W` separately.
14 The reason for this notational change is just to “jump” over the special component `, which is treated separately in game G1.
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Combining the last equation with the intermediate results from Claims 1–v, we can conclude that

Pr[S0] ≤
1
2

+ 2vε2-user
ind ,

where ε2-user
ind is an upper bound on the advantage of any efficient adversary attacking the security of the 2-user

scheme from Section 4.1, which is negligible by the hypothesis of the lemma, completing the proof. ut

E A Comparison with [BSW06,BW06]

Recently, Boneh et al. [BSW06,BW06] proposed traitor tracing schemes that withstand any number of traitors
(full traceability), while requiring a sub-linear ciphertext length (O(

√
n)). While the schemes of [BSW06,BW06]

are the most efficient ones supporting full collusion, they are not well suited for the more practical case of small
number of traitors (say, logarithmic in the size of the entire user population). Indeed, in this case, the ciphertext in
these schemes still contains O(

√
n) elements. In our scheme, assuming the number of traitors t is logarithmic in

the number of users n, the ciphertext has poly-logarithmic length v = O(t2(log n+ log 1
ε )) = O(log3 n), which is

asymptotically superior to the O(
√
n)-ciphertexts of [BSW06,BW06].

More importantly, the tracing algorithms of [BSW06,BW06] require O(n2) decryption queries to the pirate
decoder, whereas our scheme employs O(v) = O(log3 n) decryption queries, and is completely parallelizable.

In brief, the schemes of [BSW06,BW06] are preferable in case of full collusions, whereas our scheme has
advantages in term of efficiency and of complexity of black-box tracing when the number of traitors is logarithmic.
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