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Abstract. In this paper, we consider a pairing-based cryptographic pro-
tocol and the way to implement it on a restricted device such as a mobile
phone or a smart card. Our aim is to show the different ways to do it,
regarding (i) the capacity for the restricted device to implement a bi-
linear pairing and/or (ii) the performance regarding the implemented
bilinear pairing. We show that there are different possibilities and study
the security and efficiency of each of them. To illustrate our purpose,
we make use of the Boneh-Boyen-Shacham group signature, which needs
one on-line pairing computation.

1 Introduction

When operating in devices with restricted capabilities w.r.t. space, memory and
computing performance, the implementation of some cryptographic algorithms
sometimes need to be further studied. In these cases, it is important to find tricks
to optimize the implementation until performance is acceptable by the customer.
This is in particular the case when the studied cryptographic algorithm includes
the use of one or several bilinear pairings.

In fact, bilinear pairings are today not studied enough to be embedded into
any mobile phone or smart card, as it is the case for e.g. RSA or EC-DSA. Then,
when one has to embed a pairing-based cryptographic algorithm onto e.g. a SIM
card for mobile phones, one has to make some choices on the way to implement
the whole algorithm, and in particular the bilinear pairing itself. In this paper,
we study several possibilities, giving for each of them pros and cons.

To illustrate the different possibilities we have studied, we take in this paper
the case of the implementation of the BBS group signature scheme [2] either
in a mobile phone connected to the outside world, or in a SIM card connected
to a mobile phone. Informally, in a group signature scheme [5], any member of
the group can sign a document and any verifier can confirm that the signature
has been computed by a member of the group. Moreover, group signatures are
anonymous and unlinkable for every verifier except, in case of a dispute, for a
given authority that knows some special information. In 2004, Boneh, Boyen and
Shacham [2] have proposed a short group signature based on the use of a bilinear
pairing (especially by the group member, during the group signature process).
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The group member is now represented by a mobile phone or a SIM card and is
connected to some device (a PC or a mobile phone resp.).

The paper is organized as follows. In Section 2, we introduce our study by
giving the description of the BBS group signature and a summary of the perfor-
mances one can obtain regarding mathematical operations related to a bilinear
pairing. In Section 3, we explain how one can prevent the group member (the
mobile phone or the SIM card) to produce a bilinear pairing by replacing such
operation by exponentiation in G and the expected results. In Section 4, we
show how the computation of a bilinear pairing can be delegated to some more
powerful delegate (the connected device).

2 Introduction to Our Study

In this section, we introduce our study by describing the BBS group signature
scheme and then giving some implementation results regarding pairings and
related groups.

2.1 The BBS Group Signature Scheme

Boneh, Boyen and Shacham have proposed at CRYPTO 2004 a short group sig-
nature scheme [2] based on the Strong Diffie-Hellman and the Decisional Linear

assumptions®.

KEY GENERATION. Let G1, G2 and Gp be cyclic groups of prime order p and let
g1 (resp. g2) be a generator of Gy (resp. Gz). Let e : Gy X Go — G be a bilinear
map such that for all (a,b) € G; x G and all «, 8 € Z, e([a]a, [3]b) = e(a,b)*”?
and e(g1, g2) # 1.

Let h € G1, (1,C2 € Z;, and u,v € Gy such that [(1]u = [(2]v = h. Let v € Zj,
and w = [y]ge. Then, the tuple ({;,¢2) composes the secret values to open (.i.e
revoke the anonymity) a signature, v is the secret key to add group members
and (p, g1, g2, h, u, v, w) is the whole group public key.

Each group member obtains from the group manager a tuple (4, z) € Gy xZ;,
such that A = [1/(y+ z)]g1. This couple verifies e(A, w + [x]g2) = e(g1, g2). The
value x is the member’s secret and A is the key used to retrieve the identity of
a member in case of opening (i.e. anonymat revocation).

GROUP SIGNATURE GENERATION. On input a message m and a tuple (4,x),
a group signature is executed as follows:

— choose at random «, 8 € Z, and compute T} = [o]u, T> = [S]v and T3 =
A+ [a+ B)h;

— compute §; = za and dy = z3;

— choose at random rq,738,7%,75,, s, € Zp;

3 We used the additive notation for group laws in G1 and G, which are elliptic curve
groups.
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— compute &1 = [ro|u, to = [rglv, ts = [re]Th + [—7s, |y, ta = [re]Te + [—7s,]v
and

ts = e(Ts,g92) e(h,w) "> ""Pe(h,gy) 01 "2, (1)

— compute ¢ = H(m/||Ty[|T2||Ts[t1[t2]|ts]|tallts);
— compute sq = 1o + ca, Sg = rg + B, S5 = Ty +cx, S5, = 15, + ¢ and
85, = T5, + COa.

A group signature is o = (T4, T%, T3, ¢, Sa, S8, Sz, Ss,, S5, )- Here (Th,T5,T3) is a
linear encryption of A (see [2| for such encryption scheme) and (c, sq, $3, Sz, S5, » S55)
is a proof of knowledge of a valid certificate (using the Fiat-Shamir heuristic [7]).
The verification step consists then in verifying this proof of knowledge, using
standard techniques, and the open procedure is the decryption of the linear en-
cryption.

IMPLEMENTATION. We now focus on the group signature procedure and the
way to implement it on e.g. the mobile phone of the group member.

As e(h,w) and e(h, g2) depend only on public values, these pairings can be
precomputed by e.g. the group manager (and directly put in the whole group
public key), it only remains one additional bilinear pairing to compute: e(T3, g2).
As a conclusion, the group member should perform 7 random generations, 5
scalar multiplications in Gy, 2 double-scalar multiplications in Gq, 1 triple ex-
ponentiation in G, 1 pairing evaluation and a few operations in G, Gy and Z,
(which will be neglected in the following).

2.2 Implementation of a Bilinear Pairing

The security level implies minimal sizes for r (the size of the elliptic curve sub-
group in which pairing operands live) and p* (the size of the finite field which
receives pairing outputs). The integers r and p are prime numbers, and k is the
embedding degree. We have developed our own bilinear pairing e : Gy xGgy — Gr
with a Barreto-Naerhig elliptic curve E of equation Y2 = X? + 5 over F, (with
p a prime number). More precisely, we have:

— G1 = E[r|(F,), where E[r] denotes the r-torsion group;

— Gy = E[r](Fy) U Ker(m, — [p]) C E[r](F,x), where 7, : E — E is the
Frobenius endomorphism; and

— Gr=yp, C F;k where p, is the group of r-th roots of unity.

We have then chosen a 128-bits security level, which gives us log, r = 256
and log, p¥ = 3248. For k = 12, we obtain |p| = |r| = 256.

SOME OPTIMIZATIONS. To accelerate the computation of pairings, some opti-
mizations were used. In particular, we make use of the results given in [6] for
some general low level optimizations (in particular the use of Jacobian coordi-
nates and the joint point-and-line computation).
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We have then implemented the Ate pairing as described in [1], which permits
us to boost the pairing computation. Our results are given in Table 1 for the
Samsung Galaxy S2 smartphone with a Dual-core Exynos 4210 1.2GHz processor
ARM Cortex-A9 with the Android OS, v2.3 (Gingerbread).

operation notation|time computation
(in ms)
Scalar multiplication in G; = E[r](F)) € 5.7
Exponentiation in Gy = F;lz ¢ 42
Ate pairing e P 63

Table 1. Our implementation benchmark

Dealing with multi-scalar multiplications. The BBS scheme moreover needs to
implement the multi-scalar multiplication in G; (resp. multi-exponentiation in
Gr), which are the most costly operations. One solution to improve multi-
scalar multiplication (resp. multi-exponentiation) is to use the generalization
of the Shamir’s trick which is presented in [9]. In that case, the computation of
c= Zle [ei]gi (vesp. ¢ = Hle g;") is improved since it is not necessary to com-
pute each scalar multiplication (resp. modular exponentiation) and add (resp.
multiply) the results since ¢ can be computed globally. Using such trick, the
computation of ¢ necessitates approximatively ?)2:2% times the cost of a scalar
multiplication (resp. modular exponentiation).

Thus, for a triple scalar multiplication in G (resp. modular exponentiation
in Gr), the expected time complexity is approximately 1.25¢ (resp. 1.25(¢).

2.3 BBS on a Restricted Device

Using the above benchmark for pairings and operations in the different used
groups, the whole BBS group signature represents the following complexity (ne-
glecting random generation and scalar multiplications in Z,): 5 scalar multipli-
cations in Gp, 2 double-scalar multiplications in Gy, 1 triple exponentiation in
Gr, and 1 pairing, that is approximately (using the generalization of Shamir’s
trick) 7.3¢ 4+ 1.25¢ + 1. Using our above benchmark, we obtain an estimate of
approximately 157 ms for this solution.

3 From a Bilinear Pairing to an Exponentiation in Gr

We now give one possibility to implement such group signature, which is in
particular explained in the paragraph “Performance” of Section 6 in [2].
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3.1 Removing the Bilinear Pairing

One possibility is to consider that the group manager, when generating the
tuple (A, x) for the group member, already pre-computes A = e(A, g2) and gives
it to the group member. Then, using A and assuming that @w = e(h,w) and
h= e(h, g2) are already precomputed (see above), we see easily that

AR = e(A, g2)e(h, 92)*t = e(A + [a + Blh, g2) = (T3, g2), (2)
which corresponds to the result we need. Then, Equation (1) becomes (in Gr)

te = ATeqgTa—Ts fre(@+B)—rs ~7s,

which is a new way for the group member (the mobile phone) to compute .

As a result, using such technique, the group member has now to perform 7
random generations, 5 exponentiations in Gi, 2 double exponentiations in G, 1
triple exponentiation in G, and no pairing evaluations.

3.2 Pros and Cons

IMPLEMENTATION. The main advantage of this method is that it is not neces-
sary to embed a pairing on the mobile phone, since the phone does not have
to compute any more pairing. However, in practice, this advantage is not as
important as it is since the mobile needs to perform multi-exponentiations in
Gr and in G;. Thus, it is necessary to implement the algebraic structure of a
bilinear pairing, without implementing a bilinear pairing. Thus, regarding the
pure implementation aspects, the gain is not very important.

ErrIciENCY. Regarding efficiency, the computation of the bilinear pairing plus
a triple exponentiation is replaced by only a triple exponentiation (and no pair-
ing!). The other operations are unchanged, except for some extra operations in
Z,, which we neglect throughout the text (e.g. computing r,(a+ 8) — s, —75,).

In total, we obtain: 5 scalar multiplications in G1, 2 double-scalar multipli-
cations in Gy and 1 triple exponentiation in Gr, that is 7.3¢ 4+ 1.25¢. Using our
above benchmark, we obtain an estimate of 94 ms for this solution.

Remark 1. As the most costly operation for a pairing is the final exponentiation
in G, the gain is not always as important as it can be (for other schemes
than BBS). The different optimizations for this final exponentiation need to be
compared to the existing methods regarding multi-exponentiation (see above).
Then, depending on the number of components in the multi-exponentiations,
the results regarding efficiency can be different.

4 Delegating the Pairing Computation

We here give another possibility which consists in delegating the computation
of the bilinear pairings to a more powerful entity.
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4.1 How to Delegate

We first remark that the pairing computation which we focus on is e(7T3, g2),
where T35 is part of the output group signature (and is consequently a public
value since the group signature is public) and g5 is a public parameter. As our
pairing needs no secret key and as it takes on input public values, the output is
also public (any verifier can compute it after the reception of a group signature).
Our idea is then to delegate this computation to another entity. This entity can
correspond to e.g. a more powerful laptop, or some kind of dedicated server
(e.g. a cloud for cryptographic operations) where it is easier to implement a fast
bilinear pairing. Another example is when the true group member corresponds
to the SIM card while the external helper is the mobile phone.

After having computed T3 (see above in Section 2.1), the mobile phone can
send it to this powerful entity which computes ¢ = e(T5, g») and sends the results
to the mobile phone. In this case, Equation (1) becomes (in Gr)

ts =t e(h,w) " "Pe(h, gy) 0102, (3)

In this case, the mobile phone has to perform 7 random generations, 5 scalar
multiplications in G, 2 double-scalar multiplications G, 1 triple exponentiation
in Gp, and no pairing evaluations.

4.2 Pros and Cons

IMPLEMENTATION. Again, in this solution, there is no need to implement a bi-
linear pairing in the mobile phone. Again also, it is still necessary to implement
most of the algebraic structure of the bilinear pairing. Thus, regarding the pure
implementation aspects, the gain is still not very important.

ErrIciENCY. Regarding efficiency, the computation of the bilinear pairing plus a
triple exponentiation is replaced by the sole triple exponentiation. However, we
need to take into account the additional communication steps of such method
(the computation of the bilinear pairing by the powerful entity is not taken into
account as it can be executed in parallel with other computations performed by
the mobile phone). In the previous methods, there is only one communication
step of the whole group signature. Here, we add an additional communication
for sending and receiving T3 and ¢ respectively.

Practically speaking, we obtain (again neglecting random generation and
scalar multiplications): 5 scalar multiplications in G, 2 double-scalar multipli-
cations in G and 1 triple exponentiation in G, which corresponds exactly to the
above time complexity. This time, we also only need to compute scalar addition
(and no scalar multiplication as for the previous solution).

However, this does not include the additional communication. In practice,
we can approximate the communication between a mobile phone and the exte-
rior or between the SIM card and the mobile phone to 200 kbits/s (and thus
approximately 17 ms for the communication in our case). Using an 3G/UMTS
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communication, the resulting rate can reach 2 Mbits/s, which makes the com-
munication step negligible.

FACING CORRUPTED DELEGATE. One additional problem with this method is
that the powerful delegate can send to the mobile phone a wrong value ¢ so that
the resulting group signature will be rejected. There exists in the literature ver-
ifiable delegation of cryptographic operation, but, to the best of our knowledge,
no work has been done regarding pairings.

However, in some practical cases, this “attack” is not useful. In particular,
if the group signature generated by the mobile signature necessarily goes throw
this delegate for the final sending to the true verifier, this one can easily send to
the verifier anything it wants to make reject the group signature. If such group
signature is used for e.g. access control, the customer will see that she can not
access the place she wants and thus detect that something is wrong.

Remark 2. In some cases, such as for the identity-based encryption scheme of
Boneh-Franklin [3], the pairing evaluation includes a secret value, which may
make this method impossible. In fact, as proposed by Lefranc and Girault [§],
there exists some delegation technique for this case. For example, if one wants to
compute e(a,b) where a is secret and b is public, one possibility is for the mobile
phone to compute ¢ = [a]a, where « is random, and for the delegate d = e(c, b).
The result e(a, b) is then d'/®.

5 Conclusion

With our practical results, it seems that the second solution, which consists in
replacing the bilinear pairing by operations in Gy, is the best one. This also
shows that the optimizations regarding operations in G are very important, as
well as the communication rate between e.g. the mobile phone and the exterior.
Note finally that the delegation technique can be extended to other operations
related to the BBS signature scheme, such as proposed in [4], which can make
the last solution better in some particular cases.
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