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Abstract. Since 1985 and their introduction by Goldwasser, Micali and
Rackoff, followed in 1988 by Feige, Fiat and Shamir, zero-knowledge
proofs of knowledge have become a central tool in modern cryptography.
Many articles use them as building blocks to construct more complex
protocols, for which security is often hard to prove. The aim of this
paper is to simplify analysis of many of these protocols, by providing
the cryptographers with a theorem which will save them from stating
explicit security proofs. Kiayias, Tsiounis and Yung made a first step
in this direction at Eurocrypt’04, but they only addressed the case of
so-called “triangular set of discrete-log relations”. By generalizing their
result to any set of discrete-log relations, we greatly extend the range of
protocols it can be applied to.

1 Introduction

The main purpose of authentication is to know who is who. More pre-
cisely, Alice wants to be convinced that the entity she communicates with
is the right one. When using cryptography, this is often achieved by prov-
ing knowledge of a particular secret without (provably) revealing it. In
1985, Goldwasser, Micali and Rackoff [19] introduced the concept of zero-
knowledge interactive proofs (ZKIP). The idea of using it for purposes
of authentication came one year later in the article by Fiat and Shamir
[15], followed in 1988 by Feige, Fiat and Shamir [14], who introduced the
zero-knowledge proofs of knowledge (ZKPK).

In modern cryptography, these protocols are not only used for authen-
tication but also as building blocks to achieve more complex purposes,
such as for example guaranteeing the anonymity of a user [1, 5, 9] or com-
mitting to a secret value without being able to change one’s mind [16].
In these schemes, users typically have to compute some public data rely-
ing on secret and random values, then prove that these public data are
well-formed by using these building blocks. The security of the global
construction relies both on the computed data and protocols they are
involved in, which consequently have to be proven as being ZKPK.

Appeared in W. Susilo, J. K. Liu, Y. Mu (Eds.): ProvSec 2007, LNCS 4784,pp. 122–137, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



The aim of this paper is to simplify analysis of many of these pro-
tocols, by providing the cryptographers with a theorem which will save
them from stating explicit security proofs. Kiayias, Tsiounis and Yung
made a first step in this direction at Eurocrypt’04, but they only ad-
dressed the case of so-called “triangular set of discrete-log relations”. By
generalizing their result to any set of discrete-log relations, we greatly
extend the range of protocols it can be applied to.

1.1 Related Work

Many ZKPK have been proposed since the article of Feige et al. in 1988
[14]. When based on discrete logarithms, they are often built over a cyclic
group G = 〈g〉 either of known prime order q (after Schnorr’s article [22])
or of unknown order (but in the same range of magnitude as the order of
G). In this paper, we will only consider discrete-logarithm based ZKPK
in groups of unknown order, since this is the most difficult case. In this
setting, the building block is the GPS authentication scheme [18], which
allows to prove knowledge of a discrete logarithm in such groups.

The construction of complex cryptographic tools such as group signa-
ture schemes, credential schemes or e-cash systems, always requires more
than a single proof of knowledge of a single discrete logarithm. Rather,
it involves several secret values and several (discrete-log based) relations
between these values. The GPS scheme has therefore to be extended in
order to obtain first new building blocks as e.g. a proof of knowledge of
a representation [16, 13], that involves two secret values and one relation,
a proof of equality of two known representations [11, 7], which requires
four secret values and two relations, or the proof that a committed value
lies in an interval [4, 7, 10, 3], that necessitates several secret values and
relations. Then, these various building blocks are used to construct still
more elaborate protocols, the security of which must be demonstrated in
detail for each of them, though the proofs are very similar to each other.
As a consequence, it would be very useful to design a “general proof”
which could apply to a wide range of such protocols, saving the designers
from proving them secure.

Kiayias, Tsiounis and Yung [20] use such complex protocols in their
construction of traceable signatures and, as an independent interest of
the paper, make a first step towards designing such a general proof. They
introduce the notion of Discrete-Log Relation Set (DLRS), that is a set of
relations involving objects (as public keys and parameters) and free vari-
ables (as secret elements). For each free variable, there is a corresponding
secret known by a prover P. Then they propose a generic 3-move honest
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verifier zero-knowledge proof that allows P to prove the knowledge of
these values. They also show that their construction is a ZKPK in the
particular case of a triangular discrete-log relation set, that is when each
relation introduces at most one new free variable w.r.t. the previous ones.
They thus solve the above problem only in part, since their security proof
only addresses a particular case. The aim of our paper is to solve this
problem in general, for any discrete-log relation set.

1.2 Our Contribution

In this paper, we prove the soundness of any discrete-log relation set
(DLRS), as defined by Kiayas, Tsiounis and Yung [20], i.e. when G is a
(large) subgroup of the multiplicative group of the ring of integers modulo
a composite integer. We do not address the zero-knowledge property, since
it happens that it can be derived from [20] in a straight-forward manner.
Unlike in [20], we do not have any restrictions on the kind of DLRS we
use.

All security proofs for a ZKPK in a group of unknown order use the
trick of either solving the Flexible RSA problem or retrieving all secret
values involved in the proof1. Another contribution of this paper is that,
to the best of our knowledge, our proof is the first one where the instance
of the Flexible RSA problem is clearly defined.

1.3 Organization of the Paper

We first give some preliminaries in the next section. Section 3 introduces
the first results on DLRS. It also gives evidence that the model of Kiayias
et al. does not cover all kind of DLRS. We then give our new theorem
and its proof in Section 4, then conclude in Section 5.

2 Preliminaries

In the following, G will be typically a group QR(n) of quadratic residues
modulo n, where n is a safe RSA modulus, as defined in the next sub-
section. By definition, the group G is a group of possibly unknown order
but where the size of the group order, denoted by lG, is known.

1 This is not the case for group of prime order.
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2.1 Mathematical Background

A prime p is a safe prime when p = 2p′+1 and p′ is a prime. A safe RSA
modulus n is an integer which is the product of two distinct safe primes
p = 2p′+1 and q = 2q′+1, that is n = pq. The following technical lemma
(see e.g. [17]) will be useful.

Lemma 1. Let n = pq, where p < q, p = 2p′ + 1, q = 2q′ + 1, and p, q,
p′, q′ are all prime numbers. Then,

1. The order of elements in Z∗n is in {1, 2, p′, q′, 2p′, 2q′, p′q′, 2p′q′}.
2. Given an element w ∈ Z∗n \ {−1, 1} such that ord(w) < p′q′, then

either gcd(w − 1, n) or gcd(w + 1, n) is a prime factor of n.

As a consequence of the above lemma, any value found by a party that
does not know (and cannot compute) the factorization of n must be of
order at least p′q′ in Z∗n (except for −1 and 1).

Lemma 2. Let n = pq, where p < q, p = 2p′ + 1, q = 2q′ + 1, and p, q,
p′, q′ are all prime numbers.

If ν2 = 1 and ν ∈ QR(n) then ν = 1.

Proof. As a safe modulus, n is also a Blum number (a product of two
primes equal to 3mod4). As a consequence, any element of QR(n) has
exactly one square root in QR(n). Since 1 is in QR(n), 1 is the only
square root of 1 in QR(n).

2.2 Number Theoretic Assumption

The security of discrete-logarithm based zero-knowledge proofs of knowl-
edge in groups of unknown order relies on the Flexible RSA assumption
(independently introduced by Barić and Pfitzmann [2] and by Fujisaki
and Okamoto [16], also known as Strong RSA). This assumption can be
stated as follows, restricted to safe modulus, as it is the case in our paper.

Assumption 1 (Flexible RSA) Given a safe RSA modulus n and Γ ∈
QR(n), it is infeasible to find u ∈ Z∗n and e ∈ Z>1 such that ue = Γ
(mod n), in time polynomial in dlog p′q′e with a non-negligible probability.

2.3 Zero-Knowledge Proofs of Knowledge

The notion of interactive zero-knowledge proof of knowledge has been
formalized by Feige, Fiat and Shamir [14]. As in [20], we only consider
honest verifier zero-knowledge since this is always the considered setting
in studied complex constructions. Let us give the following (informal)
definition.
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Definition 1. An interactive protocol between a prover P and a verifier
V, that takes on input Y, is a zero-knowledge proof of knowledge of a
secret x if the three following properties are verified.

– Completeness: given an honest prover P and an honest verifier V, the
protocol succeeds with overwhelming probability.

– Soundness: given a dishonest prover P̃ that is accepted by a verifier V
with non-negligible probability, it is possible to construct a probabilistic
polynomial time Turing machine M that can find x by interacting with
P̃.

– (Honest verifier) zero-knowledge: it exists a probabilistic polynomial-
time Turing machine that takes on input Y and which can simulate the
communications between an honest prover P and an honest verifier V
such that these simulated communications are indistinguishable from
those between a real prover P and a real honest verifier V.

3 First Result on DLRS

Discrete-log relation sets (DLRS) were introduced by Kiayias et al. [20],
and are useful when constructing complex proofs of knowledge for proto-
cols operating over any group, even of unknown order. These construc-
tions are quite useful in many complex cryptographic protocols [16, 1, 5,
9].

3.1 Introduction of the Concept of DLRS

The following definition of a DLRS has been proposed in [20]:

Definition 2. (see [20]) Let G be a finite group. A discrete-log relation
set R with z relations over r variables and m objects is a set of relations
defined over the objects A1, . . . , Am ∈ G and the free variables α1, . . . , αr

with the following specifications:

1. the i-th relation in the set R is specified by a tuple 〈ai
1, . . . , a

i
m〉 so that

each ai
j is selected to be one of the free variables {α1 . . . , αr} or an

element of Z. The relation is to be interpreted as
∏m

j=1 A
ai

j

j = 1.
2. every free variable αω is assumed to take values in a finite integer

range ]2lω − 2µω , 2lω + 2µω [ where lω, µω ≥ 0.

We will write R(α1, . . . , αr) to denote the conjunction of all relations
∏m

j=1 A
ai

j

j = 1 that are included in R.
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Notation. The following notation will be used for the rest of the ar-
ticle. For the i-th relation, we define for each free variable αω (ω ∈
{1, . . . , r}) the set Jω,i ⊆ {1, . . . , m} of the variable’s locations in the
tuple 〈ai

1, . . . , a
i
m〉. If a free variable αω is not contained in the relation i,

the set Jω,i is empty. We also set Ji =
⋃r

ω=1 Jω,i. Note that j /∈ Ji means
ai

j ∈ Z. Finally, for all ω = 1, . . . , r, let us denote Ãω,i =
∏

j∈Jω,i
Aj . Nat-

urally, if Jω,i = φ then Ãω,i = 1. Consequently, the i-th relation verifies
the following relation.

m∏

j=1

A
ai

j

j = 1 ⇔
r∏

ω=1

Ãαω
ω,i

∏

j /∈Ji

A
ai

j

j = 1

Using these notations, a 3-move honest verifier zero-knowledge proof
allows a prover that knows witnesses x1, . . . , xr such that ∀ω, xω ∈]2lω −
2ε(µω+k)+2, 2lω + 2ε(µω+k)+2[ and R(x1, . . . , xr) = 1 to prove knowledge of
these values, is presented in [20] and shown in Figure 1, where ε and k
are both security parameters such that ε > 1 and k ∈ N.

∀ω ∈ {1, . . . , r}, sω
?∈ ±{0, 1}ε(µω+k)+1

P V

∀ω ∈ {1, · · · , r}, rω ∈R ±{0, 1}ε(µω+k)

∀i ∈ {1, · · · , z}, ti =
∏r

ω=1 Ãrω
ω,i

∀ω ∈ {1, · · · , r}, sω = rω − c(xω − 2lω )

c ∈R {0, 1}k

∀i ∈ {1, · · · , z},
r∏

ω=1

Ãsω
ω,i

?
= ti


 ∏

j /∈Ji

A
ai

j

j

r∏

ω=1

Ã2lω

ω,i




c

s = {sω}

c

t = {ti}

Fig. 1. Discrete-log Relation Set R

Remark 1. Note that the proof of knowledge of Figure 1 only proves that
a witness x ∈]2l − 2µ, 2l + 2µ[ lies in ]2l − 2ε(µ+k)+2, 2l + 2ε(µ+k)+2[. If
needed, Boudot presents in [4] a scheme that provides a perfect proof
but with less efficiency. If the interval is small, it is also possible to use a
bit-by-bit solution, such as in [3, 8].
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3.2 The Result of Kiayias, Tsiounis and Yung

In [20], the authors present a particular case of our result. They prove
the security of the construction of DLRS R presented in Figure 1 w.r.t.
Definition 1 (see Section 2.3) in the case the relation R is triangular, and
when G is the group QR(n) of quadratic residue modulo n where n is
a safe RSA modulus. In the following, G will also be this group. In the
next section, we will prove the security of this construction in the general
case. A triangular DLRS is introduced in [20] by the following definition.

Definition 3. (see [20]) A discrete-log relation set R is triangular if
for each relation i containing the b + 1 free variables αω, αω1 , . . . , αωb

it
holds that {αω1 , . . . , αωb

} is a subset of the union of all the free variables
involved in relations 1, . . . , i− 1.

In this context, Kiayias et al. prove that the construction in Figure 1
is secure, i.e. for any triangular discrete-log relation set R the 3-move
protocol of figure 1 is complete, sound and honest-verifier zero-knowledge.

3.3 On the Use of Kiayias, Tsiounis and Yung Result

If a complex proof of knowledge can be represented by a triangular
discrete-log relation set, the construction of [20] is suitable. This is for ex-
ample the case in the group signature scheme proposed by Ateniese et al.
[1], where the DLRS is composed of the 9 objects T1, T2, T3, A, a0, a, y, g, h,
the 4 free-variables α, β, γ, δ such that the 4 relations a0 = Tα

1 /(aβyγ) ∧
T2 = gδ ∧ 1 = Tα

2 /gγ ∧ T3 = gαhδ) are verified in order to produce a
signature.

But, in some cases, their approach cannot be applied. For example, the
construction of [5] uses a DLRS with 8 objects (C,C1, C2, C3, g, h, 1/g, 1/h)
and 11 variables (α, β, γ, δ, η, ζ, φ, ψ, θ, σ, ν) verifying the following con-
junction of the 7 relations

C = gαhφ ∧ g =
(C

g

)γ
hψ ∧ g = (gC)σhν ∧ C3 = gζhη

∧C1 = gαhθ ∧ v = Cα
2

(1
h

)β
∧ 1 = Cα

3

(1
h

)δ(1
g

)β
.

This DLRS clearly cannot be represented by a triangular discrete-log re-
lation set.

This is also the case for [9] and more simply if Alice wants to commit
to the value x using the Fujisaki-Okamoto construction [16], and that
she knows the commited value. The latter can be done by computing
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PK(α, β : C = gαhβ), that is a DLRS R of 1 relation over 2 variables
and 3 objects.

Consequently, there is sometimes more than one new free-variable
at each new relation. More generally speaking, when a discrete-log re-
lation set R is not triangular, then for each relation i containing the
free variables αω̃1 , . . . , αω̃d

, αω1 , . . . , αωb
it holds that the free variables

αω1 , . . . , αωb
were contained in the union of all the free variables involved

in relations 1, . . . , i − 1. But that does not imply that the construction
proposed in Figure 1 does not suit the general case. What lacks is a secu-
rity proof for this construction in the general setting: the result of Kiayias
et al. [20] cannot be used as it is in the general case.

4 Generalization of the DLRS Theorem

In the general setting, the proof of completeness and honest-verifier zero-
knowledge are not different to the one described in [20]. They will con-
sequently not be treated in this paper. On the contrary, the proof of
soundness of [20] must be deeply modified to suit the model considering
any kind of DLRS, not only the triangular ones. This adaptation is the
actual contribution of this paper.

An interactive protocol between a prover P and a verifier V verifies
the soundness property if a dishonest prover P̃ can not be accepted by a
verifier V with non-negligible probability. Generally, a probabilistic poly-
nomial time Turing machine M that can find x by interacting with P̃ is
constructed to prove this property.

4.1 Our Result in a Nutshell

In this section, we briefly present our proof of soundness for all kinds of
DLRS. The global structure of our proof is described in Figure 2.

In the first step, we assume that there exists P̃ able to produce, with
non-negligible probability, valid proofs of knowledge without knowing the
secret values X = {x1, . . . , xs}. Our aim is to construct a p.p.t. Turing
machine M which, for each equation, is able to solve a given instance of
the Flexible RSA problem (FRSA).

We first give an instance (n, Γ ) of the Flexible RSA problem toM.M
generates a random DLRS R, function of this instance. We then ask P̃ to
produce a valid proof of knowledge until we obtain two valid conversations
〈t, c, s〉, 〈t, c∗, s∗〉, where c 6= c∗, t = {t1, . . . , tz}, s = {s1, . . . , sr}, s∗ =
{s∗1, . . . , s∗r}. We also denote s̃i = si − s∗i for all i, S̃ = {s̃1, . . . , s̃r} and
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c̃ = c− c∗.
From these relations, M then computes for each of the z relations

an independent equation only depending on c, c∗, s and s∗. Each couple
(si, s

∗
i ) is related to a free variable, and thus to a secret. Our aim is then

to retrieve the value of all secrets.
In a similar way to [20], the machine M always operates as follows.

1. For each of the z relations, it first pushes aside the couples (si, s
∗
i ) for

which the secret has already been retrieved. This step is not done for
the first relation.

2. It then calculates the number of secrets that are unknown in the
relation. Depending on it, there are three cases.
(a) There is only one unknown secret. This is the case that has been

studied in [20]. In fact, if, for each relation, there is only one un-
known secret, the DLRS is then triangular. The conclusion is that
either we can compute all secret or we can solve the instance (n, Γ )
of the Flexible RSA problem.

(b) There are two unknown secrets. This case corresponds to the
ZKPK of a representation. In a group of unknown order, the case
has been studied in [13], using the Root assumption. We thus
adapt it by using the Flexible RSA assumption. The conclusion is
that either we can compute all secrets or we can solve the instance
(n, Γ ) of the Flexible RSA problem.

(c) The general case (up to three but the cases 1 and 2 can also be seen
as particular cases) is the one we study in this paper. The relation
can thus be denoted as Ãs̃1

1 . . . Ãs̃d
d = Ψ c̃

i . Ã1, . . . , Ãd correspond to
the objects defined after the DLRS definition (see Section 3) and
Ψi is the product of a constant element and possibly some objects
Ãj raised to the power of secret values already compute. c̃, S̃ are
dependant of c, c∗, S, S∗.
We then study two cases. In the first one, M retrieves all secrets
involved in this relation. The second case is also divided into two
possible cases.
i. M can solve the instance (n, Γ ) of the FRSA problem.
ii. We prove that the second case only happens with probability

less than 1/2.
If M is able to find all the secret values, P̃ can also do it. So, under
the assumption that P̃ does not know these values, we conclude that
M solves the given instance of the Flexible RSA problem.

In all papers where there is a ZKPK in the group of unknown order
QR(n), such as in the paper of Kiayias, Tsiounis and Yung [20] but also
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CCT

FRSA

Ãs̃1
1 . . . Ã

s̃d
d = Ψ c̃

i

FRSAx1, . . . , xdFRSA x1, x2

DF

secrets

2

1 unknown
secret

2 unknown

x

KTY

1

p < 1/2

P̃ V2 conversations

all secret values

〈T, c, S〉, 〈T, c∗, S∗〉

z equations

d unknown secrets

⇒

Fig. 2. Sketch of proof

e.g. in [1, 6], a p.p.t. Turing machine M is constructed so as to solve with
a non-negligible probability an instance of the Flexible RSA problem.
However, this instance is never specified so that it could possibly be an
easy instance of the problem.

More precisely, the solved instance corresponds to the modular mul-
tiplication of public parameters (the Ai’s) but nothing is said about the
difficulty of solving the Flexible RSA on one Ai nor on the modular mul-
tiplication of some of them. It seems better, and that’s what we do in our
proof, to introduce a challenger C which gives to M a random instance
of the Flexible RSA problem at the beginning of the proof.

Nevertheless, as we will see in our proof,M will need to interact possi-
bly with several dishonest provers P̃, depending on the objects A1, . . . , Am

the machine M has to use to solve the Flexible RSA instance. The num-
ber z of relations and the number r of free variables can be unchanged
between all the interactions. This consequently implies the use of an at-
tacker P̃ being able to break the soundness of a DLRS for a polynomial
number of tuples A1, . . . , Am.

4.2 The New Theorem

We can then introduce our new theorem and prove the security of the
construction in Figure 1 in the case of any discrete-log relation set.
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Theorem 1. Let G = QR(n) where n(= (2p′ + 1)(2q′ + 1)) is safe. For
any discrete-log relation set R the 3-move protocol of Figure 1 is a honest-
verifier zero-knowledge proof of knowledge that can be used by a first party
(prover) knowing a witness for R to prove knowledge of the witness to a
second party (verifier).

Proof. We have to prove that the protocol of Figure 1 verifies the three
properties of completeness, soundness and honest verifier zero-knowledge.
The proof of completeness and honest verifier zero-knowledge can be
found in [20]. They will not be treated in this proof. The proof of sound-
ness of [20] must be modified to suit our model (all kinds of DLRS, not
only the triangular ones).

Assume it exists a dishonest prover P̃ attacking the soundness of the
protocol presented in Figure 1. It means that P̃ is able to produce valid
conversations for this protocol with non-negligible probability, and with-
out knowing all the involved secrets. We define a p.p.t. Turing machine
M which solves a given instance of the Flexible RSA problem, using P̃
as an oracle. Let C be the challenger who gives the instance (n, Γ ) of the
Flexible RSA problem to M. The Turing machine M:

– takes on input the instance (n, Γ ) of the FRSA problem given by C,
– generates a random DLRS R,
– interacts with P̃,
– solves the given instance using P̃’s outputs.

In order to define R, M randomly chooses integers γω ∈ {1, . . . , n2}
and computes Aω = Γ γω , for ω ∈ {1, . . . ,m}. Under the factorisa-
tion assumption, the order of Γ is φ(n)/4 and consequently, the Aω

are distributed over QR(n). M sends R to the dishonest prover P̃. Let
〈t1, . . . , tz, c, s1, . . . , sr〉 and 〈t1, . . . , tz, c∗, s∗1, . . . , s∗r〉, with c 6= c∗, be two
accepted protocols for R between P̃ and an (honest) verifier. As these
protocols are valid, both following relations are true for all i ∈ {1, . . . , z}:

r∏

ω=1

Ãsω
ω,i = ti


 ∏

j /∈Ji

A
ai

j

j

r∏

ω=1

Ã2lω

ω,i




c

and
r∏

ω=1

Ã
s∗ω
ω,i = ti


 ∏

j /∈Ji

A
ai

j

j

r∏

ω=1

Ã2lω

ω,i




c∗

⇒
r∏

ω=1

Ã
sω−s∗ω
ω,i =


 ∏

j /∈Ji

A
ai

j

j

r∏

ω=1

Ã2lω

ω,i




c−c∗

. (1)

The proof consists now in proving that using relations (1) for all i ∈
{1, . . . , z}, M is able to solve the given instance of the Flexible RSA
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problem. First, we introduce the notations we will use in the following
of the proof. For ω ∈ {1, . . . , r}: s̃ω := sω − s∗ω, and c̃ := c − c∗. We
also introduce the sets of distinct integers Ωi = {ωi,1, . . . , ωi,d}, for each
relation i (i.e. for i from 1 to z), such that the free variables αωi,1 , . . . , αωi,d

are the ones involved in the i-th relation. Using these notations, for i ∈
{1, . . . , z}, the relation (1) can be written:

∏

ω∈Ωi

Ãs̃ω
ω,i =


 ∏

j /∈Ji

A
ai

j

j

∏

ω∈Ωi

Ã2lω

ω,i




c̃

. (2)

Relation 1. Considering the first relation, there are two cases:

• c̃ divides all the integers s̃ω

The particular case where d = 1 (as in [20]) is included in the general
case. So we restrict our proof to the general case, where d ≥ 1. It
holds that the first relationship in R involves d free variables denoted
by αω for ω ∈ Ω1 = {ω1,1, . . . , ω1,d}. In this case, we have the following
relation, where Ãω stands for Ãω,1:

∏

ω∈Ω1

Ãs̃ω
ω =


 ∏

ω∈Ω1

Ã2lω

ω

∏

j /∈J1

A
a1

j

j




c̃

.

As c̃ divides s̃ω, for all ω ∈ Ω1, the previous relation becomes (see
remark below):

∏

ω∈Ω1

Ã
−s̃ω

c̃
+2lω

ω

∏

j /∈J1

A
a1

j

j = 1. (3)

Remark 2. In fact, we have the following equivalence :

∏

ω∈Ω1

Ãs̃ω
ω =


 ∏

ω∈Ω1

Ã2lω

ω

∏

j /∈J1

A
a1

j

j




c̃

⇔
∏

ω∈Ω1

Ã
s̃ω
c̃

ω = ν
∏

ω∈Ω1

Ã2lω

ω

∏

j /∈J1

A
a1

j

j ,

with νc = 1. Indeed, by definition c̃ < 2k and thus c̃ < min(p, q). By
Lemma 1, we can then affirm that the order of ν can only be equal
to 1 or 2 and by lemma 2, that ν can only be equal to 1. We will not
repeat this remark later, even when it holds.
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The equality 3 implies that we have constructed the d witnesses for
each ω-th variable x̃ω = s̃ω

c̃ + 2lω = sω−s∗ω
c−c∗ + 2lω where ω ∈ Ω1.

We verify that these values are in the right interval. For ω ∈ Ω1,
s̃ω ∈ ±{0, 1}ε(µω+k)+2 (since sω, s∗ω ∈ ±{0, 1}ε(µω+k)+1, it implies that
s∗ω − sω ∈ ±{0, 1}ε(µω+k)+2) it follows that s̃ω

c̃ ∈ ±{0, 1}ε(µω+k)+2 and
as a result x̃ω ∈]2lω − 2ε(µω+k)+2, 2lω + 2ε(µω+k)+2[. Consequently, M
finds the secrets {x̃ω} for ω ∈ Ω1 in polynomial time, P̃ can also find
it. So we can assume that P̃ already knows it.

• It exists at least one integer ω ∈ Ω1 such that c̃ does not divide s̃ω.
Now, we prove that M solves the given instance (n, Γ ) of the FRSA
problem on G. Let

T1 =


 ∏

ω∈Ω1

Ã2lω

ω

∏

j /∈J1

A
a1

j

j


 .

For all j in {1, . . . , d}, Aj = Γ γj , and for all ω ∈ Ω1, we have Ãω =∏
j∈Jω,1

Aj =
∏

j∈Jω,1
Γ γj = Γ

∑
j∈Jω,1

γj . We define θω =
∑

j∈Jω,1
γj

(mod n2) for all ω ∈ Ω1. Consequently, with those notations relation
(2) becomes:

∏

ω∈Ω1

(
Γ

∑
j∈Jω,1

γj
)s̃ω

= T c̃
1 ⇔ Γ

∑
ω∈Ω1

θω s̃ω = T c̃
1 . (4)

Without loss of generality, we assume that integers s̃1,1, . . . , s̃1,d1 are
divisible by c̃, as opposed to integers s̃1,d1+1, . . . , s̃1,d2 , with 1 ≤ d1 <
d2 = d. If d2 = 1, because we assumed that c̃ does not divide all the
s̃ω, then d1 = 0.
Then there are two cases:
1. If c̃ does not divide

∑
ω∈Ω1

θω s̃ω, M can solve the given instance
of the Flexible RSA problem as follows. Let δ be the greatest
common divisor of c̃ and

∑
ω∈Ω1

θω s̃ω. There exist α and β in Z
such that αc̃ + β

( ∑
ω∈Ω1

θω s̃ω

)
= δ. It follows that

Γ = Γ

(
αc̃+β(

∑
ω∈Ω1

θω s̃ω)
)
/δ = (ΓαT β

1 )c̃/δ.

By assumption, δ < c̃ and so, we can set e = c̃/δ and u = ΓαT β
1 ,

which is a solution of the Flexible RSA problem on G relatively
to the instance (n, Γ ).

Remark 3. This part of the proof works with any values of the
integer d1 < d2.
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2. If c̃ divides
∑

ω∈Ω1
θω s̃ω, we prove that, as P̃ does not have com-

plete information about the θω’s, this case only happens with prob-
ability less or equal to 1/2. Consequently, case (1) happens with
probability greater than 1/2 and the probability to break the Flex-
ible RSA assumption is greater than 1/2. The strategy consists in
choosing the θω’s until we get back on case (1). This quickly hap-
pens in a bounded time with non-negligible probability.
Let f be a prime factor of c̃ and e an integer such that:
– fe is the greatest power of f that divides c̃,
– at least one of the s̃ω is non-zero modulo fe.

This value must exist since c̃ does not divide at least one of the s̃ω,
even if d2 = 1. For all ω ∈ Ω1, we define bω = θω (mod ord(G))
and hω such that θω = bω + hω ord(G). Note that the Ãω,1’s rep-
resent all the information the machine P̃ knows about the θω’s
and the bω’s are uniquely determined from the Ãω,1’s, whereas the
hω’s are completely unknown. As fe divides

∑
ω∈Ω1

θω s̃ω (since c̃
does), it follows that

∑

ω∈Ω1

θω s̃ω = 0 (mod fe) and
d2∑

j=1

θω1,j s̃ω1,j = 0 (mod fe).

We know that for j from 1 to d1, s̃ω1,j ≡ 0 (mod fe) as they are
divisible by c̃, consequently,

∑d1
j=1 θω1,j s̃ω1,j ≡ 0 (mod fe).

d2∑

j=d1+1

bω1,j s̃ω1,j + ord(G)
d2∑

j=d1+1

hω1,j s̃ω1,j = 0 (mod fe). (5)

Since fe ≤ 2k ≤ min(p′, q′, we have |G| 6= 0 (mod f). P̃ does not
know anything about the hω’s except that they follow the uniform
distribution and that they satisfy equation (5). Let ω̃ be one of the
indexes such that s̃ω̃ is not divisible by fe. If d2 = 1, it is evident
that ω̃ = 1. If we fix the hω’s for ω ∈ Ω1/{ω̃}, then the number of
solutions modulo fe of the equation (5) is at most gcd(|G|s̃ω̃, fe).
This number is necessarily a power of f , since fe does not divide
|G|s̃ω̃, and at most fe−1. Since for all ω ∈ Ω1, θω has been chosen
from a large interval, the distribution of bω is statistically indistin-
guishable from the uniform distribution on Zp′q′ . Moreover the dis-
tribution of hω is statistically indistinguishable from the uniform
distribution on {0, . . . ,M}, where M =

⌊
n2/p′q′

⌋
. Thus, there are

nearly Md2 possible tuples 〈h1, . . . , hd2〉 uniformly distributed [12].
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Let w ∈ R such that M = wfe. The number of solutions of the
equation is at most [wfe−1]Md2−1, hence the probability that the
hω’s verify the equation is at most

[wfe−1]Md2−1

Md2
≤ wfe−1

M
≤ wfe−1

wfe
≤ 1

f
≤ 1

2

We can then solve the instance of the Flexible RSA problem with
non-negligible probability.

If P̃ outputs integers c̃, s̃1, . . . , s̃r such that relation (4) is verified and
at least one of the s̃ω is not divisible by c̃, for ω ∈ Ω1, then M solves
the given instance of the Flexible RSA problem.

Relation i. Now, we assume that we have processed all the relations with
index less than i and M did not already solve the instance of the FRSA
problem. We process the i-th relation which involves variables αω, for
all ω ∈ Ωi(= {ωi,1, . . . , ωi,d}). As we have processed all the relations with
index less than i, some of these variables are already known. We split Ωi in
two sets of integers Ωi,1 = {ωi,1, . . . , ωi,d2} and Ωi,2 = {ωi,d2+1, . . . , ωi,d}
so that the variables αω, for ω ∈ Ωi,2 are already contained in previous
relations. We assume that these variables are known byM and then by P̃.
By an inductive argument, we construct witnesses for the free-variables
x̃ω = −s̃ω

c̃ + 2lω = s∗ω−sω

c−c∗ + 2lω , and c̃ divides s̃ω, for all ω ∈ Ωi,2. There
are again two cases:

• c̃ divides s̃ω, for all ω ∈ Ωi,1

First, we study the particular case where d2 = 1 (see also [20]): the
i-th relation in R involves variables αωi,1 , . . . , αωi,d

, where αωi,1 is the
only one for which the witness associated is not yet constructed. Using
relation (2), the i-th relation becomes, where Ãω stands for Ãω,i:

Ã
s̃ωi,1
ωi,1

∏

ω∈Ωi,2

Ãs̃ω
ω =


Ã2

lωi,1

ωi,1

∏

ω∈Ωi,2

Ã2lω

ω

∏

j /∈Ji

A
ai

j

j




c̃

Ã
s̃ωi,1
ωi,1 =


Ã2

lωi,1

ωi,1

∏

ω∈Ωi,2

Ãx̃ω
ω

∏

j /∈Ji

A
ai

j

j




c̃

.

As c̃ divides sωi,1 we obtain the following relation :

Ã
−s̃ωi,1+2

lωi,1

c̃
ωi,1

∏

ω∈Ωi,2

Ãxω
ω

∏

j /∈Ji

A
ai

j

j = 1.
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The above equality implies that we have constructed the witness for

the variables x̃ωi,1 =
−s̃ωi,1

c̃ + 2lωi,1 =
s∗ωi,1

−sωi,1

c−c∗ + 2lωi,1 . As previously,
it is possible to show that this witness is in the right interval, i.e.
x̃ωi,1 ∈]2lωi,1 − 2ε(µωi,1+k)+2, 2lωi,1 + 2ε(µωi,1+k)+2[. We can also assume
in this case that P̃ already knows this witness.
Now, we study the general case where d2 6= 1: the i-th relation in R
involves variables αω1 , . . . , αωd

so that variables αωd2+1
, . . . , αωd

were
already contained in previous relations. So the associated witnesses
are known by P̃. Using relation (2), the i-th relation becomes:

∏

ω∈Ωi,1

Ãs̃ω
ω

∏

ω∈Ωi,2

Ãs̃ω
ω =


 ∏

ω∈Ωi,1

Ã2lω

ω

∏

ω∈Ωi,2

Ã2lω

ω

∏

j /∈Ji

A
ai

j

j




c̃

(6)

∏

ω∈Ωi,1

Ãs̃ω
ω =


 ∏

ω∈Ωi,1

Ã2lω

ω

∏

ω∈Ωi,2

Ãx̃ω
ω

∏

j /∈Ji

A
ai

j

j




c̃

. (7)

As c̃ divides sω for all ω ∈ Ωi,1 we obtain the following relation:

∏

ω∈Ωi,1

Ã
−s̃ω+2lω

c̃
ω

∏

ω∈Ωi,2

Ãxω
ω

∏

j /∈Ji

A
ai

j

j = 1.

The above equality implies that we have constructed d2 witnesses for
each ω-th variable x̃ω = −s̃ω

c̃ + 2lω = s∗ω−sω

c−c∗ + 2lω , for all ω ∈ Ωi,1. As
previously, it is possible to show that these witnesses are in the right
intervals, i.e. x̃ω ∈]2lω − 2ε(µω+k)+2, 2lω + 2ε(µω+k)+2[, for all ω ∈ Ωi,1.
We can also assume in this case that P̃ already knows those witnesses.

• It exists at least one integer ω ∈ Ωi,1 such that c̃ does not divide s̃ω. Like
in part (4.2), we have to prove that M can solve the given instance
(n, Γ ) of the Flexible RSA problem on G. As in the previous part, the

relation (7) is true. Let Ti =
(∏

ω∈Ωi,1
Ã2lω

ω

∏
ω∈Ωi,2

Ãx̃ω
ω

∏
j /∈Ji

A
ai

j

j

)
.

As in part (4.2), we have, for all ω ∈ Ωi,1, Ãω = Γ
∑

j∈Jω,i
γj , and we

define θω =
∑

j∈Jω,i
γj , for all ω ∈ Ωi,1. With those notations, relation

(7) becomes Γ
∑

ω∈Ωi,1
θω s̃ω = T c̃

i . This relation has exactly the same
form than relation (4). Then, it is possible to conclude similarly that
M solves the given instance of the Flexible RSA problem on G with
a non-negligible probability.

In conclusion, M will not be able to solve the given instance (n, Γ )
of the Flexible RSA problem only if c̃ divides all integers s̃1, . . . , s̃r. But
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in this case, it is necessary that P̃ knows all the witnesses involved in the
protocol, which is infeasible by assumption. Consequently, M necessarily
solves the given instance (n, Γ ) if it obtains as input two valid conver-
sations from P̃. Since the machine M interacts a polynomial number of
times with P̃ which runs in polynomial time, M solves the random in-
stance of the Flexible RSA problem in polynomial time. Thus, under the
Flexible RSA assumption, P̃ cannot product valid conversations for the
protocol of Figure 1, then the soundness of the DLRS is proved.

5 Conclusion

We have proved that many complex discrete-logarithm protocols in groups
of unknown order are ZKPK under the Flexible RSA assumption. A re-
sult by Kiayias, Tsiounis and Yung appears as a particular case of our
construction. It is possible to extend the work done in this paper to sig-
nature schemes using the Fiat-Shamir heuristic [15]. The security of the
construction can then be proven by using the result of [21].

There is still some work to do since complex cryptographic construc-
tions can also use ZKPK of secret values verifying some different proper-
ties not studied in this paper such as e.g. the proof of the “or” statement
and the proof of equality of two discrete logarithms in different groups.
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