
      THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY                                                                            Volume 14, Special Issue 2013, pp. 378–387 

ON THE (IN)SECURITY OF GROUP KEY TRANSFER PROTOCOLS BASED ON 
SECRET SHARING 

Ruxandra F. OLIMID  

Department of Computer Science, University of Bucharest, Romania 
E-mail: ruxandra.olimid@fmi.unibuc.ro 

Group Key Transfer (GKT) protocols allow multiple parties to share a common secret key: a trusted 
Key Generation Center (KGC) selects a uniformly random value that has never been used before and 
securely distributes it to the legitimate principals. The paper restricts to GKT based on secret sharing; 
it briefly reviews the security goals and the existing formal security models. We motivate our work by 
the lack of GKT protocols based on secret sharing that are proved secure in a formal security model. 
Most of the recent proposals only provide informal and incomplete arguments to claim security, 
which makes them susceptible to known vulnerabilities. We support our affirmation by exemplifying 
with three different types of attacks (replay attack, insider attack and known key attack) mounted 
against protocols published within the last three years. We emphasize that none of these attacks would 
have been possible against a GKT protocol proved secure in a usual formal security model. 

Key words: Group key transfer, Group key establishment, Secret sharing, Formal security model, 
Replay attack, Insider attack, Known key attack. 

1. INTRODUCTION 

Group applications have widely spread in the last years. They permit multiple users to benefit of 
common resources or perform collaborative tasks while they provide differentiate rights or responsibilities 
within the group. Group applications include text communication, audio, video or web conferences, data 
sharing or collaborative computing. Let’s take the example of a digital conference: multiple users are 
simultaneously logged in the conference environment. However, they do not all communicate between 
themselves and should not be aware of the conversations within groups they do not belong to. Usually, the 
initiator of a conference is a privileged participant who can invite or exclude other parties from the meeting.  

Security represents an important aspect for group applications. It is a challenging task to deal with, 
especially when the group size is large and the members are spread across different (location or networks) 
areas, with diverse protection mechanisms. In order to obtain the main cryptographic properties as 
confidentiality, authenticity and integrity it is usually required that the group members previously share a 
common secret group key. This is achieved as the output of a group (or conference) key establishment 
protocol. 

Group Key Establishment (GKE) protocols divide into [5], [19], [20], [21]: Group Key Transfer (GKT) 
(also called group key transport or group key distribution) protocols and Group Key Agreement (GKA) (also 
called group key exchange) protocols. In a GKT protocol exists a privileged party named Key Generation 
Center (KGC) that selects the group key and securely distributes it to the other members. In a GKA protocol 
each party equally contributes to the key generation, which should not be predetermined by any participant. 

This paper focuses on the security of GKT protocols. Next section introduces a short description of 
GKT and its comparison with GKA, then restricts to GKT protocols based on secret sharing and mentions 
some of the recent work. Section 3 reviews the informal security goals GKT must achieve and the formal 
security models designed for GKE (excluding the contributiveness goals, which regard only GKA protocols). 
Section 4 summarises the adversarial and attack types GKT should stand against. Section 5 introduces three 
examples of attacks on recent introduced GKT protocols. Section 6 concludes. 



2 On the (In)Security of Group Key Transfer Protocols  379

2. PRELIMINARIES 

2.1. Group Key Transfer (GKT) 

GKT protocols permit multiple parties to share a common secret group key. The protocol may be 
executed (concurrently) for multiple times; each execution is called a session and it is uniquely identified by 
a session id. Each session permits a set of qualified (also called authorized or legitimate) participants from 
the set of registered users to establish the common key, which should remain hidden for any other party. A 
registered user is a party who has previously registered to the KGC and with whom shares a long-lived key 
(usually a public-secret key pair the user uses for signing). 

The session key is chosen by the KGC, which must be trusted by all participants as honest in the sense 
that it selects a fresh key (a uniformly random chosen value that has never been used before). This trust 
assumption is not required for GKA, which do not demand the existence of a privileged party to select the 
key, but compute it by equal contribution of all principals. However, regardless of the GKE type, a trust 
relation is mandatory: the qualified participants to a session trust each other that none of them discloses the 
shared key. Otherwise, the confidentiality of the protocol is violated by default. 

Due to the fact that parties do not necessary have to communicate between themselves (but only with 
the KGC), the computational and transmission costs of GKT protocols are usually lower that those of GKA 
protocols. Also, the design of GKT is in general less challenging.  

Depending on the application needs or constraints (security requirements, computational resources and 
transmission costs), a GKT or a GKA protocol may suit best.  

A general mechanism for defining GKT protocols is immediate [7]: KGC generates a fresh group key 
and sends its encrypted value under the appropriate key to each legitimate participant. Hence, any authorized 
user decrypts and finds the key, while it remains secure against unauthorized parties. We have assumed that 
an authentication mechanism exists, such that the KGC or the users cannot be impersonated and the message 
cannot be modified during transmission. This trivial solution becomes inefficient for large groups: KGC 
must perform m encryptions and send m messages, where m is the number of qualified participants. In case a 
symmetric encryption scheme is used to decrease the computational costs (rather than an asymmetric 
encryption scheme), a supplementary assumption appears: each registered group member must previously 
share a secret with the KGC. 

Secret sharing is used in GKE protocols to avoid such disadvantages; in addition, they introduce 
several benefits: a convenient way to differentiate between principals power within the group, delegation of 
duties by passing shares to other participants, group authentication instead of entity authentication, cheating 
detection and simple management of group sizing using the accepted threshold [26]. Next section briefly 
reminds secret sharing. 

2.2. Secret Sharing 

Blackley [4] and Shamir [27] independently introduced secret sharing as a solution to the key 
management problem. It represents a mechanism that splits a secret into multiple shares such that the secret 
may be recovered only from authorized sets of shares. In general, a secret sharing scheme consists of three 
phases: sharing (a dealer splits the secret into multiple parts, called shares), distribution (the dealer securely 
sends one or more shares to each party) and reconstruction (a qualified set of parties combine their shares to 
recover the secret). 

The set of all authorized sets of shares in called the access structure. A secret sharing scheme whose 
access structure contains all sets with at least t  out of m  shares is called ),( mt  threshold secret sharing 
scheme; a secret sharing scheme whose access structure contains only the set of all shares is called all-or-
nothing (or unanimous) secret sharing scheme. 

Various GKE protocols based on secret sharing exist in the literature. We only remind here some of the 
recent work in the field of GKT protocols: Harn and Lin’s protocol based on Shamir’s scheme (2010) [15], 
Hsu et al.’s protocol based on linear secret sharing (2012) [16], Sun et al.’s protocol based on derivative 
secret sharing (2012) [28] and Yuan et al.’s protocol based on Shamir’s scheme (2013) [30]. We highlight 



 Ruxandra F. Olimid 3 380 

that even though all mentioned protocols were published in the last three years, none of them gives a security 
proof in a formal model, but rather incomplete and informal arguments of security. This leads to a high 
opportunity to reveal vulnerabilities. We emphasize that the existing work in the field of GKE protocol based 
on secret sharing scheme with formal security proofs is very limited. 

3. SECURITY DEFINITIONS AND MODELS 

3.1. Informal Security Definitions 

A GKT protocol can be considered secure if it achieves the properties that we informally recall next 
[19], [20]. We restrict to security goals that apply to GKT and do not remind specific properties of GKA, 
which are beyond the scope of this paper (such as key contributiveness or key control).  

Key confidentiality (also called key privacy, key secrecy or non-disclosure) [7], [12], [13], [17] 
guarantees that it is (computationally) infeasible for an adversary to compute the group key. The stronger 
notion of known key security [6], [29] assures that key confidentiality is maintained even if the attacker 
somehow manages to obtain group keys of previous sessions. Backward secrecy [11], [20] generalizes this 
concept and conserves the privacy of future keys regardless the adversary’s actions in the past sessions. 
Correspondingly, forward secrecy [11], [13] imposes that the adversary actions in future runs of the protocol 
do not compromise the privacy of previous session keys (i.e. a key remains secure in the future).  

Key selection must satisfy specific properties. Key freshness [21] requires that the group key is new 
(i.e. it has never been used before). The related concept of key independence [17], [23] imposes that no 
correlation exists between keys from different sessions; this means that (cooperation between) authorized 
participants to distinct sessions of the protocol cannot disclose session keys they are unauthorized for. In 
addition, key randomness warrants key indistinguishability from a random number and hence key 
unpredictability. Two other important security requirements regarding the key value exists: key integrity 
[17], which attests that no adversary can modify the group key and key consistency, which prevents different 
players to accept different keys. 

Group member authentication represents a mandatory condition for group cryptographic protocols. 
Entity authentication [1] confirms the identity of a participant to the others. Similarly, unknown key share 
resilience [13] restricts a user to believe that the key is shared with one party when in fact it is shared with 
another. Key compromise impersonation resilience [3], [14] prevents an attacker who owns the long-lived 
key of a participant to impersonate other parties to him. The stronger property named ephemeral key leakage 
resilience [31] avoids an adversary to recover the group key even if he discloses the long-lived keys and 
ephemeral keys of parties involved except both these values for the participants in the test session. 

(Implicit) Key authentication [21] limits the possible owners of the group key to the legitimate 
participants; this means that no other party except the qualified users is capable to compute the key, but it 
does not necessary mean that all legitimate principals actually own it. Another property, called key 
confirmation [5], [21] certifies that all authorized members actually have the key; however, it does not claim 
that no other party own the same key. Explicit key authentication (or Mutual Authentication) [2], [8], [11], 
[21] combines these notions and ensures that all qualified participants to the protocol have actually computed 
the group key and no one else except them has. 

For more information on informal security requirements, we invite the reader to refer to [19] and [20]. 

3.2. Formal Security Models 

Security models formalize the properties described in the previous subsection within a precise 
environment, specifying the trust assumptions, the relations between participants, the adversarial power, the 
communication medium and others relevant aspects. Similar to the informal definitions mentioned before, 
GKE security models were developed as a generalization of the existing two or three party security models. 

Bresson et al. introduced the first security model for GKE protocols in 2001 [10]. Their model was 
rapidly extended to allow dynamic groups, meaning that the group membership may change during the 
protocol execution [8]. One year later, the same authors improved their model to stand against strong 



4 On the (In)Security of Group Key Transfer Protocols  381

corruptions, which permit an attacker to reveal the ephemeral internal state information of the user instances 
[9]. In 2005, Katz and Shin considered the existence of malicious users, in the sense that even if a registered 
party always knows the key of sessions he is qualified for, he must be restricted to perform malicious actions 
[18]; for example, he should not disclose session keys he is unauthorized for, modify the value of the 
common key as he desires or make honest users compute different keys. Recently, stronger security notions 
were considered: Gorantla, Boyd and González Nieto introduced in 2009 a model that deals with key 
compromise impersonation [14], while Zhao et al. enhanced it in 2011 to achieve ephemeral key leakage 
resilience [31]. For an extensively survey on group key security models, the reader may address to [19] and [20]. 

We skip the formal definitions of the security models, as they do not represent the goal of this paper. 
However, we briefly remind that they rely on two main security requirements known as AKE-Security 
(Authenticated Key Exchange Security) and MA-Security (Mutual Authenticated Security). AKE-Security’s 
main objective is to prevent unqualified members to reveal the common group key; it aims informal security 
notions such as key confidentiality, forward and backward secrecy, known key security, key compromise 
impersonation or ephemeral key leakage resilience. MA-Security’s primary goal is to make users aware of 
the correct identity of the other parties and compute identical keys at the end of the protocol; it unifies 
informal concepts such as (implicit) key authentication, key confirmation or unknown key share resilience. 
We bypass the notion of key contributiveness, which only applies to GKA protocols. 

Although much research has been done in the last years in the field, the security models still have some 
limitations concerning the adversarial capabilities. For example, the existing models do not deal with DoS 
(Denial of Service) or fault tolerance [11]. Protocols remain vulnerable to this kind of attacks, even if they 
are proved to be secure in formal security models. 

4. ADVERSARIES AND ATTACKS CLASSIFICATION 

A secure GKT protocol must stand against passive and active adversaries. A passive adversary can 
only eavesdrop on the communication channel, while an active adversary has full control over the network 
(he can drop, modify or insert messages). It is immediate that an active attack is more powerful than a 
passive attack and therefore active attacks should be considered when formally analysing the security of a 
group key protocol. 

Regarding the appartenance to the group, attackers split into: outsiders and insiders. An outsider is a 
party that has not registered as a group member (and hence does not posses a valid long-lived key within the 
group) and never takes part to the key establishment as a legitimate participant. An outsider attack aims to 
reveal the established group key and therefore to break the AKE-Security of the protocol, usually by 
impersonating authorized users. An insider is a valid group member, who has registered within the group at a 
given moment and therefore has the advantage to posses a long-lived key. He is qualified to compute session 
keys he is authorized for, but this should provide him no advantage in revealing other keys (of sessions he is 
unqualified for) or damage the protocol in any other way: find the long-term keys of other users, ruin key 
consistency or get control over the key value. Of course, insiders are more powerful than outsiders, because 
they have access to additional information. Within the definition of formal security models, an adversary is 
not considered to be a malicious user, but an external attacker who has access to the long-lived keys and/or 
ephemeral values used during the run of the protocol by making queries [11]. We illustrate an insider attack 
[25] on Yuan et al.’s protocol [30] later in this paper. 

Impersonation attacks try to make messages originating from the adversary indistinguishable from 
messages originating from legitimate users (the adversary pretends to be a qualified group member). This 
may result in computing a different key than the genuine one or in establishing a common key with an 
attacker instead of an authorized user. A successful impersonation attack can for example break entity 
authentication, unknown key share resilience or key compromise impersonation resilience. A special kind of 
attack is the replay attack that consists in injecting messages from previous executions of the protocol. This 
can turn into a key replication attack, where the same (corrupted) key is derived for multiple runs of the 
protocol. It is immediate that a key replication attack violates key freshness. We review a replay attack [22] 
on Harn and Lin’s construction [15] in Section 5. 



 Ruxandra F. Olimid 5 382 

Known key attacks aim to disclose a session key when the adversary knows at least one key from a 
previous run of the protocol. All insiders satisfy the assumption by default, as they may legitimate take part 
to protocol executions. We exemplify a known key attack [24] on Sun et al.’s proposal [28] in the next 
section. 

Attacks can be classified based on the information the adversary has access to: the long-lived key of 
the registered users or the ephemeral secrets used during protocol execution. Opening attacks allow the 
attacker to learn the ephemeral secrets without revealing the long-lived secrets, while weak corruption 
attacks allow the attacker to learn the long-lived secrets without revealing ephemeral secrets. Strong 
corruption attacks combine these two attacks and give the adversary tremendous power: he can corrupt a 
user and obtain both his long-lived secret and his ephemeral secret values [11]. 

DoS (Denial of Service) attacks lead to the futility of GKT protocols: they prevent legitimate users to 
establish common secret keys that they would have later use for application purposes. A DoS attack may 
inhibit users to compute any key at all or may force users to end up with different keys. Although the attack 
is discovered at the latest during the execution of the application (the group members realise that they cannot 
properly communicate between themselves) it represents an important aspect of network security. In contrast 
to the previously mentioned attacks, we highlight that the DoS attacks are not considered within the existing 
formal security models for GKE protocols [11]. 

In formal security models, the adversary is modelled as a PPT (Probabilistic Polynomial Time) 
algorithm with full control over the communication channel (hence active in the sense that it can inject, 
delete or modify exchanged messages). He interacts with the legitimate group members by asking queries 
with the scope to reveal information that he may use in breaking the AKE-Security or MA-Security. For 
example, he makes Corrupt queries to obtain the long-lived key of registered participants, RevealState 
queries to retrieve ephemeral secret used by parties during the protocol execution or RevealKey queries to 
retrieve the common shared key of particular sessions.  Each security model defines the queries an attacker is 
allowed to make (which model the power of the attacker) as well as the security game he plays against the 
AKE-Security or MA-Security of the protocol (which he breaks if he wins the game with non-negligible 
probability). We will skip the formal definitions of particular formal models, but strongly invite the reader to 
address some of the recent original papers [11], [14], [31] or surveys [19], [20]. 

5. ATTACKS ON RECENT GKT PROTOCOLS 

The current section describes three types of attacks against recent GKT protocols: a replay attack on 
Harn and Lin’s protocol [15] introduced by Nam et al. [22], an insider attack on Yuan et al.’s proposal [30] 
defined by Olimid [25] and a known key attack on Sun et al.’s construction [28] revealed by Olimid [24]. 
We emphasize that all mentioned protocols lack a formal security proof and hence the vulnerabilities arise 
natural.  

For the rest of the paper, we will use the following notations: m  the number of possible users, 
mtUU t ≤},,...,{ 1  the set of participants to a given session (after reordering) with 1U  as initiator, 1,hh  and 

2h  collision-resistant hash functions, R←  a random choice from a specified set of values, ||  string 
concatenation, 4..1),( =js j  specific protocol sessions. 

Let aU  be the attacker. His main goal is to break the AKE-Security or MA-Security of the protocol. 

aU  may be an insider ( },...,{ 1 ma UUU ∈ ) or an outsider ( },...,{ 1 ma UUU ∉ ), depending the adversarial 
scenario.  

We proceed with the description of the protocols and the attacks. For more details, we invite the reader 
to address the original papers. 

 
Protocol 1. Harn and Lin [15] 
Initialization. KGC  selects two large safe primes p  and q  and computes pqn = . 
Users Registration. Each user miUi ..1, =  shares a long-lived secret **),( nnii ZZyx ×∈  with the 

KGC . 



6 On the (In)Security of Group Key Transfer Protocols  383

Round 1. User 1U  sends a key generation request: 
),...,(: 11 tUUKGCU → . 

Round 2. KGC  broadcasts the list of participants as a response: 
),...,(: 1

*
tUUKGC → . 

Round 3. Each user tiUi ..1, = chooses *
n

R
i Zr ← , computes ),,( iiii ryxhAuth =  and sends: 

),(: iii AuthrKGCU → . 
 Round 4. KGC  checks if tiryxhAuth iiii ..1),,,( ==  (otherwise he aborts), selects a group key 

*
n

R Zk ← , generates the polynomial )(xf  of degree t  that passes through ),0( k  and tiryx iii ..1),,( =⊕ , 
computes t  additional points tPP ,...,1  on )(xf  and the authentication message 

),...,,,...,,,...,,( 111 ttt PPrrUUkhAuth = , then broadcasts: 

),,...,(: 1
* AuthPPKGC t→ . 

 Key Computation. Each user tiUi ..1, =  computes the group key )0(f  by interpolating the points 

tPP ,..,1  and ),( iii ryx ⊕  and checks if ),...,,,...,,,...,,( 111 ttt PPrrUUkhAuth =  (otherwise he aborts). 
 
Attack 1. Replay Attack [22] 
Attack scenario. aU  is an insider whose goal is to break the AKE-Security of Protocol 1: he obtains the 

key of any session a user },..,,,..,{ 111 maai UUUUU +−∈  is qualified for (even if aU  is unqualified for) by 
disclosing the long-lived secret of iU . 

Step 1. aU  eavesdrops ),( ii Authr from a session iU  is qualified for. 
Step 2. aU  initiates two legitimate sessions of the protocol with iU ,  denoted by 2,1),( =js j . 

Step 3. In both sessions, aU  impersonate the legitimate user iU  by sending the eavesdropped message 
),( ii Authr  and behaves honestly in sending his own message ),( aa Authr . 

Step 4. aU  recovers the coefficients of the polynomials 2,1,)( )()(
2

)()( =++= jcxbxaxf
jjjj ssss , as 

being a qualified participant for sessions 2,1),( =js j . 

Step 5. As ),( iii ryx ⊕  and ),( aaa ryx ⊕  are valid points on 2,1,)( )( =jxf
js , ix  and ax  are two 

roots of the quadratic equation: 

.0)()( )()()()(
2

)()( 212121
=−+−+− ssssss ccxbbxaa  (1)

Step 6. aU  computes the secret key of iU  as: 

.)()(

)()(

2)(1)(

)()(
1

)()(
1

21

2121

rxfrxfy

ccaaxx

sisii

ssssai

⊕=⊕=

−−= −−

 (2)

Step 7. aU  discloses all keys of the sessions iU  is qualified for by using the long-lived secret ),( ii yx . 
 
Protocol 2. Yuan et al. [30] 
Initialization. KGC  selects two large primes p  and q  and computes pqn = . 
Users Registration. Each user miUi ..1, =  shares a long-lived secret password iyixi pwpwpw ||=  with 

the KGC . 
Round 1. User 1U  chooses n

R Zk ←1 , computes 111 kpwK x +=  and ),,...,( 1111 kUUhM t= , then 
sends a key generation request: 



 Ruxandra F. Olimid 7 384 

),},,...,{,(: 11111 MKUUUKGCU t→ . 
Round 2. KGC  computes xpwKk 111 −= , checks if ),,..,( 1111 kUUhM t=  (otherwise he aborts) and 

broadcasts the list of participants as a response: 
),...,(: 1

*
tUUKGC → . 

Round 3. Each user tiUi ..2, =  chooses n
R

i Zk ← , computes iixi kpwK +=  and 
),,..,( 1 itii kUUhM = , then sends: 

),},,...,{,(: 11 iiti MKUUUKGCU → . 
 Round 4. KGC  computes ixii pwKk −= , checks if tikUUhM itii ,..,2),,,..,( 1 ==  (otherwise he 
aborts), selects 2 random numbers tax  and tay  of lengths equal to ixpw  and iypw , generates the polynomial 

)(xf  of degree t  that passes through ),( tata yx  and tikpwpw iiyix ..1),,( =+ , computes t  additional points 

tPP ,...,1  on )(xf  and the verification messages tikPPUUhV itti ..1),,,..,,,...,( 112 == , then sends: 

),,...,(: 1
*

it VPPKGC → . 
Key Computation. Each user tiUi ..1, =  checks if ),,..,,,...,( 112 itti kPPUUhV =  (otherwise he aborts) 

and computes the group key )0(fk =  by interpolating the points tPP ,...,1 and ),( iiyix kpwpw + . 
 
Attack 2. Insider Attack [25] 
Attack scenario. aU  is an insider whose goal is to break the AKE-Security of Protocol 2: he obtains the 

key of any session a user },..,,,..,{ 111 maai UUUUU +−∈  is qualified for (even if aU  is unqualified for) by 
disclosing the long-lived secret password of iU . 

Step 1. aU  initiates four legitimate sessions of the protocol with iU , denoted by 4..1),( =js j . 

Step 2. aU  recovers the coefficients of the polynomials 4..1,)( )()(
2

)()( =++= jcxbxaxf
jjjj ssss , as 

being a qualified participant for sessions 4..1),( =js j . 

Step 3. aU  eavesdrops the values 4..1,)( =jK
jsi ; as ),( )( jsiiyix kpwpw +  are valid points on 

4..1,)( )( =jxf
js  and )()( jj siixsi kpwK += , aU   obtains: 

4..1,)1( )()()(
2

)( =−+++= jKcpwbpwapw
jjjj sisixsixsiy . (3)

Step 4. aU  eliminates iypw  from the first two equations ( 2,1=j ), respectively from the last two 

equations ( 4,3=j ) in (3) and obtains: 







=++

=++

,0

0

),(),(
2

),(

),(),(
2

),(

434343

212121

ssixssixss

ssixssixss

CpwBpwA

CpwBpwA
 (4)

where: 

)( )()()()(),(

)()(),(

)()(),(

212121

2121

2121

sisissss

ssss

ssss

KKccC

bbB

aaA

−−−=

−=

−=

;       

)( )()()()(),(

)()(),(

)()(),(

434343

4343

4343

sisissss

ssss

ssss

KKccC

bbB

aaA

−−−=

−=

−=

 (5)

 
Step 4. aU  computes the secret key of iU  as: 



8 On the (In)Security of Group Key Transfer Protocols  385

.4..1,)(

))((

)()(

1
),(),(),(),(),(),(),(),( 4321214321434321

=−+=

−−= −

jKpwpwfpw

BABACACApw

jj siixsixiy

ssssssssssssssssix
 (6)

Step 5. aU  discloses all group keys of the sessions the user iU  is qualified for by using the long-lived 
password iyixi pwpwpw ||= . 

 
Protocol 3. Sun et al. [28] 
Initialization. KGC  selects a multiplicative cyclic group G  of prime order p  with g  as generator. 
Users Registration. Each user miUi ..1, = shares a long-lived secret Gsi ∈

, with the KGC . 
Round 1.  User 1U  sends a key generation request: 

),...,(: 11 tUUKGCU → . 
Round 2. KGC  broadcasts the list of participants as a response: 

),...,(: 1
*

tUUKGC → . 

Round 3. Each user tiUi ..1, =  chooses *
p

R
i Zr ←  and sends it to the KGC : 

ii rU *→ . 

 Round 4. KGC  selects a value GS R← , invokes the derivative secret sharing scheme to split S into 2 
parts t  times such that ,

ii ssS +=  (in G ), ti ,..,1= , computes the session group key as Sgk = (in G ), t  

messages tirsgUhUgM ii
rs

ii
rs

i
iiii ..1)),,,,(,,( , == ++  and ),...,,,...,,,...,,( 11

11
tt

rsrs rrUUggkhAuth tt++= , 
then broadcasts: 

),,...,(: 1
* AuthMMKGC t→ . 

 Key Computation. Each user tiUi ..1, = checks if ),,,( ,
ii

rs
i rsgUh ii+ equals the corresponding value in 

iM  (otherwise he aborts), computes 1' )( −+= iiii rrss gggk , checks if ,,...,,,...,,( 1
11

t
rsrs UUggkhAuth tt++=  

),...,1 trr (otherwise he aborts), accepts k  as the group key and sends: 

),...,,,...,,,(: 11
,

ttiii rrUUkshhKGCU =→ . 

Key Confirmation. KGC  checks if ),...,,,...,,,( 11
,

ttii rrUUkshh =  using his knowledge on ,
is  and k , 

certifying that all users posses the same key. 
 
Attack 3. Known Key Attack [24] 
Attack scenario. aU  is an adversary who knows the key )( 1s

k  of a session )( 1s and his goal is to break 

the AKE-Security of Protocol 3: he obtains the key )( 2sk of another session )( 2s  (he is unauthorized for) that 

has at least one common qualified participant iU  with )( 1s . 

Step 1. aU  eavesdrops 
)( jsir and 2,1,)()( =

+
jg jsijsi rs

and computes: 

2,1,)( 1)()()()( == −+
jggg jsijsijsijsi rrss

. (7)

Step 2. aU  knows the session key )( 1s
k and uses the previously computed value )1( sis

g  to obtain: 

1
)( )( )1(

1

, −= sii
s

s
s gkg  (8)

Step 3. aU  recovers the session key )( 2sk from (7) and (8) as: 



 Ruxandra F. Olimid 9 386 

,
)2(

2 )(
isi ss

s ggk =  (9)

6. CONCLUSIONS 

The paper considers GKT protocols based on secret sharing schemes. It provides a brief survey on the 
informal security notions that GKT protocols should satisfy and reviews the adversarial models and types of 
attacks that GKT protocols should stand against. Security models formalize such requirements within a 
specific environment. We highlight the necessity of electing a protocol secure within a suitable model, 
considering the best trade-off between efficiency and the required security level for each application. 

Unfortunately, current work on GKT protocols based on secret sharing neglect this aspect. Recent 
published protocols ignore formal security and only rely on incomplete and informal arguments. This makes 
them susceptible to known vulnerabilities that would have been excluded by a proper proof under a 
convenient security model. In order to support our claim, we recall three different types of attacks against 
GKT protocols using secret sharing that were published within the last three years: a replay attack, an insider 
attack and a known key attack. We mention that all these attacks are considered, and therefore impossible to 
succeed, in all usual security models. 

Although much work has been done in the field of formal security lately, we must admit some 
limitations. The GKE formal security models do not deal with all known vulnerabilities. For example, they 
do not stand against DoS attacks. Therefore, even if a GKT protocol is proved secure in a strong security 
model, it can become useless if participants are restricted to compute the session key. This can be easily 
achieved by blocking the messages to arrive to the qualified participants: since a user misses mandatory 
information, he can no longer recover the session key and therefore halts. We admit that DoS attacks are 
probably impossible to handle only by cryptographic techniques and therefore require proper protection 
mechanisms. 

To conclude, we highlight the problems a protocol without a formal security proof may raise and 
emphasize the deficiency of provable secure GKT protocols based on secret sharing in the literature, which 
we consider a direction for further research.  

ACKNOWLEDGEMENTS 

This paper is supported by the Sectorial Operational Program Human Resources Development (SOP 
HRD), financed from the European Social Fund and by the Romanian Government under the contract 
number SOP HDR/107/1.5/S/82514. 

REFERENCES 

1. M. Bellare, P. Rogaway, Entity Authentication and Key Distribution, In Advances in Cryptology (CRYPTO’93), pp. 232–249, 
1993. 

2. M. Bellare, P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient Protocols, In Proceedings of the 1st 
ACM Conference on Computer and Communications Security (CCS’93), pp. 62–73, 1993.  

3. S. Blake-Wilson, D. Johnson, A. Menezes, Key Agreement Protocols and Their Security Analysis, In Proceedings of the 6th IMA 
International Conference on Cryptography and Coding, pp. 30–45, 1997.  

4. G. Blakley, Safeguarding Cryptographic Keys, In Proceedings of the AFIPS’79, pp. 313–317, 1979. 
5. C. Boyd, On Key Agreement and Conference Key Agreement, In Information Security and Privacy: Australasian Conference,  

pp. 294–302, 1997. 
6. M. Burmester, On the Risk of Opening Distributed Keys, In Advances in Cryptology (CRYPTO’94), pp.308–317, 1994. 
7. M. Burmester, Y. Desmedt, A Secure and Efficient Conference Key Distribution System, In Proceedings of EUROCRYPT’94,  

pp. 275–286, 1994. 
8. E. Bresson, O. Chevassut, D. Pointcheval, Provably Authenticated Group Diffie-Hellman Key Exchange - The Dynamic Case, In 

Proceedings of ASIACRYPT’01, pp. 290–309, 2001. 
9. E. Bresson, O. Chevassut, D. Pointcheval, Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions, In 

Proceedings of EUROCRYPT’02, pp. 321–336, 2002. 



10 On the (In)Security of Group Key Transfer Protocols  387

10. E. Bresson, O. Chevassut, D. Pointcheval, J.J. Quisquater, Provably Authenticated Group Diffie-Hellman Key Exchange, In 
Proceedings of the 8th ACM Conference on Computer and Communications Security (CCS’01), pp. 255–264, 2001. 

11. E. Bresson, M. Manulis, Securing Group Key Exchange against Strong Corruptions, In Proceedings of ASIACSS’08, pp. 249–260, 
2008. 

12. W. Diffie, M.E. Hellman, New Directions in Cryptography, IEEE Transactions on Information Theory, IT-22(6), pp. 644–654, 
1976. 

13. W. Diffie, P.C. van Oorschot, M.J. Wiener, Authentication and Authenticated Key Exchanges, Designs, Codes and Cryptography, 
2(2), pp. 107–125, 1992. 

14. M.C. Gorantla, C. Boyd, J.M. González Nieto, Modeling Key Compromise Impersonation Attacks on Group Key Exchange 
Protocols, In Proceedings of Public Key Cryptography (PKC’09), pp. 105–123, 2009. 

15. L. Harn, C. Lin, Authenticated Group Key Transfer Protocol based on Secret Sharing, IEEE Trans. Comput. 59(6), pp. 842–846, 
2010. 

16. C. Hsu, B. Zeng, Q. Cheng, G. Cui, A Novel Group Key Transfer Protocol, Cryptology ePrint Archive, Report 2012/043, 2012. 
17. P. JANSON, G. TSUDIK, Secure and Minimal Protocols for Authenticated Key Distribution, Computer Communications, 18(9), 

pp. 645–653, 1993. 
18. J. Katz, J.S. Shin, Modeling Insider Attacks on Group Key-Exchange Protocols, In Proceedings of the 12th ACM Conference on 

Computer and Communications Security (CCS’05), pp. 180–189, 2005. 
19. M. Manulis, Survey on Security Requirements and Models for Group Key Exchange, Technical Report 2006/02, 2006. 
20. M. Manulis, Provably Secure Group Key Exchange, European University Press, 2007. 
21. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.  
22. J. Nam, M. Kim, J. Paik, W. Jeon, B. Lee, D. Won, Cryptanalysis of a Group Key Transfer Protocol based on Secret Sharing, In 

Proceedings of the 3rd International Conference on Future Generation Information Technology, pp. 309–315, 2011. 
23. M. Steiner, G. Tsudik, M. Waidner, CLIQUES: A New Approach to Group Key Agreement, In Proceedings of the 18th 

International Conference on Distributed Computing Systems (ICDCS’98), pp. 380–387, 1998. 
24. R.F. Olimid, On the Security of an Authenticated Group Key Transfer Protocol Based on Secret Sharing, In Proceedings of ICT-

EurAsia 2013 (AsiaARES 2013), pp. 399–408, 2013. 
25. R.F. Olimid, Cryptanalysis of a Password-based Group Key Exchange Protocol Using Secret Sharing, Appl. Math. Inf. Sci.7(4), 

pp. 1585–1590, 2013. 
26. J. Pieprzyk, C.H. Li, Multiparty Key Agreement Protocols, In IEEE Proceedings - Computers and Digital Techniques, pp. 229–236, 

2000. 
27. A. Shamir, How to Share a Secret, Commun. ACM 22(11), pp. 612–613, 1979. 
28. Y. Sun, Q. Wen, H. Sun, W. Li, Z. Jin, H. Zhang, An Authenticated Group Key Transfer Protocol based on Secret Sharing, 

Procedia Engineering 29(0), pp. 403–408, 2012. 
29. Y. Yacobi, Z. Shmuely, On Key Distribution Systems, In Advances in Cryptology (CRYPTO’89), pp. 344–355, 1990. 
30. W. Yuan, L. Hu, H. Li, J. Chu, An Efficient Password-based Group Key Exchange Protocol Using Secret Sharing, Appl. Math. 

Inf. Sci. 7(1), pp. 145–150, 2013. 
31. J. Zhao, D. Gu, M.C. Gorantla, Stronger Security Model of Group Key Agreement, In Proceedings of the 6th ACM Symposium on 

Information, Computer and Communications Security (ASIACCS’11), pp. 435–440, 2011. 
 

Received June 1, 2013 

 


