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Abstract. This work investigates several methods to achieve efficient
software implementations of systems of multivariate quadratic equations.
Such systems of equations appear in several multivariate cryptosystems
such as the signature schemes sflash, Rainbow, the encryption scheme
pmi+, or the stream cipher quad. We describe various implementation
strategies. These strategies were combined to implement the public com-
putations of three asymmetric schemes as well as the stream cipher quad.
We conducted extensive benchmarks on our implementations which are
exposed in the final section of this paper. The obtained figures support
the claim that when some care is taken, multivariate schemes can be
efficiently implemented in software.
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1 Introduction

Multivariate cryptography is a quickly expanding research branch of cryptology.
Its development, initiated by the seminal work of T. Matsutomo and H. Imai
[7, 10, 11] and J. Patarin [13–15], was mainly motivated by the search for al-
ternatives to arithmetic asymmetric cryptosystems such as RSA. Multivariate
cryptography exploits the intractability of solving a multivariate system of low
degree equations (typically quadratic equations) over a small finite field. Many
multivariate asymmetric schemes for encryption, signature, or authentication
have been proposed over the past years and a restricted number of them (e.g.
the sflash and uov signature schemes [1, 8]) have successfully resisted crypt-
analysis so far.

0 The work described in this paper has been supported by the French Ministry of
Research RNRT X-CRYPT project and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT.
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The development of multivariate cryptography has recently taken another
path with the proposal of a symmetric multivariate algorithm, the stream cipher
quad [2]. This cipher takes advantage of the specific characteristics of multivari-
ate systems of equations in order to provide some provable security properties
(an extremely unusual feature in the context of symmetric cryptography) at the
expense of a moderate performance penalty.

What renders multivariate cryptography attractive from an implementation
point of view is that intractable multivariate problems can be extremely com-
pact. Consequently, the performance of multivariate schemes’ implementations is
often intermediate between the typical performance of asymmetric schemes and
the typical performance of symmetric schemes. But efficient implementations of
multivariate schemes have not been systematically investigated so far, and there
is a lack of figures to serve as reference when comparing multivariate schemes to
other systems in terms of practicality. In the case of the asymmetric multivariate
signature scheme sflash for instance, considerable optimization efforts [1] were
made to produce a highly efficient implementation of the secret key computa-
tions and to establish that unlike RSA, the sflash signature algorithm can be
efficiently embedded in 8-bit smart cards without coprocessor. However there
was no effort to optimize the public key computations which are typically done
on a server. Another example where optimization takes place on the secret’s
holder side and does not relate to any public computations is the study of public
key generation presented in [17].

The main issue one is faced when implementing multivariate schemes in soft-
ware is to achieve an efficient computation of (at least apparently) random sys-
tems of quadratic equations over a small finite field GF(q). This issue arises for
instance in software implementations of the public computations in the setting
of asymmetric schemes (for signature verification, encryption, or entity authen-
tication purposes), or for the implementation of symmetric schemes (like in the
case of the stream cipher quad). Efficient implementations of such multivariate
quadratic systems of equations without using any specific structure will thus
benefit all multivariate schemes as it is not tight to any particular cryptosystem.

This paper is organized as follows. Section 2 describes several methods that
can be used to efficiently implement such generic systems. We discuss the spe-
cial cases of GF(2), GF(24), and GF(28) which are in practice the most suitable
ground fields in most multivariate cryptosystems, and focus on parameter sizes
(like the number of unknowns and the number of polynomials in the system) di-
rectly arising from real cryptosystems outlined in Section 3. Section 4 exhibits a
comprehensive set of benchmarks showing the performance of our various C ansi
implementations of asymmetric schemes like sflash, pmi+, and Rainbow pub-
lic keys as well as quad’s internal system of equations. We finally draw our
conclusions.
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2 Implementation strategies

This section describes various strategies we investigated in order to efficiently
implement the computation of quadratic systems in several cases of crypto-
graphic significance. We specify along these descriptions which strategy seems
best suited for a particular setting. The computation of any multivariate system
of m quadratic equations in n unknowns over a finite field GF(2p) can obviously
be split into two phases: generating the value of each of the degree two monomi-
als, and actually computing the value of the output polynomials. While for both
steps there are rather academic ways to perform the computations, they have
to be tuned to the context of use. All the algorithms described hereafter have
the same asymptotic complexity, namely O(n2) to generate the monomials and
O(mn2) to compute the polynomials. However because we target real crypto-
graphic schemes, the values of m and n lie in some range and as we show in the
following it is possible to achieve big speedups. This is especially true when, as is
the case in our practical cryptographic examples, the values of n and m are the
same order of magnitude as the machine word size w. Moreover, fine tuning the
implementation in order to take into account the available amount of L2 cache
plays an essential role in the overall efficiency.

2.1 Generating all monomials

There are many ways to compute the values of all degree two monomials for
a given set of n variables over a finite field GF(2p). However, their respective
efficiency highly depends on the ground field size. We hereafter focus on the
natural cases p ∈ {1, 4, 8}.

The näıve way The most näıve way to compute a set of monomials is ob-
viously to consider every pair (xi, xj) of variables in turn and to generate the
corresponding monomial xixj . This method is efficient provided one has direct
access to each variable, which is the case for instance when working over GF(28).
On the opposite, when binary variables are packed in big words, the overhead
of accessing the variables is prohibitive.

Rotations Another intuitive way which may seem particularly attractive in the
case of a binary ground field (since the total number of operations is reduced by
a factor of the machine word size) is to consider the set of variables as a vector
of machine words and to perform w multiplications in parallel using bitwise ands
between cyclically rotated versions of this vector. However this is not the most
efficient strategy over GF(2) as is shown in the sequel.

Bitslice multiplications This strategy can be rather efficient in the case of
intermediate ground fields such as GF(24) provided we implement a bitslice
multiplication to replace the bitwise multiplications of the binary case. Such
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a bitslice implementation is described for instance in [9]. It basically requires
storing the set of n variables over GF(24) in p vectors of size dn/we words and
performing the computations on these vectors directly, hence avoiding bit level
manipulations. (In the existing cryptographic schemes, the number n of variables
is about the size w of a machine word, and so the vectors typically consist of a
small number of machine words.)

2.2 Computing the polynomials

Once all monomials have been generated, one has to compute the value of every
polynomial of the equation system. Recall that we are considering polynomials
of the special form:

Pk(x1, . . . , xn) =
∑

1≤i≤j≤n

αki,jxixj +
∑

1≤l≤n

βkl xl + γk.

Given the value of every monomial, a straightforward computation of any
polynomial would require n(n + 1)/2 field multiplications between coefficients
and monomials and the same amount of additions in order to accumulate the
result. In this section, we show how to do this more efficiently depending on the
context.

Blocking is not enough A natural way of implementing the computation of
the polynomials is to perform a kind of matrix/vector product, where vector
entries holds the value of the monomials and matrix rows represent the value of
the polynomials’ coefficients just as shown on the left side of Fig. 1. However,
even when multiplications are implemented in a bitsliced fashion, this method
appears to be rather slow in practice.

x = (x1, . . . , xn)

x1x1 · · · xixj · · · xnxn

P1(x)

P2(x)

Pm(x)

x = (x1, . . . , xn)

x1x1 · · · xixj · · · xnxn

P1(x)

P2(x)

Pm(x)

Fig. 1. Left: blocking with bitslice is too slow. Right: using lookup tables
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Lookup tables and field multiplications To compute the value of the poly-
nomials one basically has to multiply each monomial with the corresponding
coefficient in each polynomial. Of course, such a multiplication is costly and it
is worth trying to avoid it; a standard way to do this is by implementing lookup
tables. In our case, this strategy amounts to precomputing the contribution of
a monomial to all polynomials simultaneously, thus saving a factor of m in the
number of table lookups. This requires a lookup table with 2p − 1 entries of
m/w machine words for all of the n(n + 1)/2 monomials. (There is no need to
store the contribution of zero, and hence there are 2p − 1 entries.)

Obviously, the memory required to store all these lookup tables is of cru-
cial importance since they have to fit the processor’s cache. In the special case
of GF(24) with n = 40 and m = 80 for instance, the amount of space required
is 492 K bytes, which fits the L2 cache of most processors. On the opposite, in
the special case of GF(28) with n = 20 and m = 40 the required space now is
strictly more than 2 M bytes and will not fit any L2 cache.

To solve this issue, it is possible to split the contribution of any monomial to
the polynomials into two parts. This method may be thought of as analogous to
extension towers representation of finite fields. Basically, the idea is to perform
the multiplication x×α as xlow×α0⊕xup ×α1 where xlow and xup are respectively
the p/2 less significant bits and the p/2 most significant bits and α0 and α1 are
values of GF(2p) derived from the value of the coefficient α. This very simple
trick dramatically decreases the size of the lookup tables: they have 2p/2− 1 en-
tries instead of 2p − 1. For instance, the previous example with GF(28), n = 20
and m = 40 now requires 252 K bytes of storage which thus fit most of current
processors’ L2 cache. A drawback of this technique is that the implementation
becomes vulnerable to side channel attacks like cache attack [12].

2.3 The special case of GF(2)

There are several benefits of working in the boolean setting. Obvious remarks are
that multiplications are readily handled by bitwise ands and that since x2

i = xi,
we only have to handle homogeneous monomials of degree two. Less obviously,
the fact that a monomial now has probability 3

4 to be zero leads to the optimiza-
tion described in the first paragraph of this section.

Generating only the non zero monomials On the average, any variable
has probability 1

2 being zero. Hence any monomial of degree two is zero with
probability 3

4 . We can take advantage of this simple fact by first computing
the list of indices of non-zero variables, and then generating all pairs of such
indices. The number of pairs of non-zero monomials being n(n + 1)/8 on the
average, this significantly decreases the number of lookups to the tables storing
the contribution of those monomials to the polynomials and also decreases the
overhead during the accumulation process. Moreover, there is no need to extract
data at the bit level since all the required information can be discovered with
the help of tiny auxiliary lookup tables.
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A differential trick To push the previous advantage one step further, the
following property appears to be very useful. Every multivariate quadratic poly-
nomial Q has the property that for any x = (x1, . . . , xn) and any δ = (δ1, . . . , δn),
Q(x)⊕Q(x⊕ δ) = Lδ(x), where Lδ(x) is linear with respect to x for any fixed
value of δ. We now show how this fact can be used to amplify the cost saving
achieved in the previous paragraph. Indeed, in order to compute a system S(x)
of multivariate quadratic equations, we first precompute the corresponding lin-
ear system Lη in x corresponding to the specific η = (1, . . . , 1). For instance, the
k-th row of Lη is given by:

Pk(x)⊕ Pk(x⊕ η) =
∑

1≤i≤j≤n

αki,j (xi ⊕ xj ⊕ 1) + cst.

Then, depending on the weight of x, we either perform the computation of S(x)
by evaluating S(x) in case the Hamming weight of x is lower or equal to n

2 , or
we actually compute the mathematically equivalent function S(x ⊕ η) ⊕ Lη(x)
in case the Hamming weight of x is bigger than n

2 .
This differential trick can be pushed a little bit further with the use of an

error correcting code. Considering a binary linear code, it is possible to compute
S(x) with S(x⊕η)⊕Lη(x), where x⊕η has a hamming weight lower than some
value d determined by the code. However the counterpart is that we have to
store for each of the code word a linear system and for each x we have to find
the closest code word. For a small d, the number of code words becomes large
and the memory required becomes prohibitive.

3 Some Multivariate Cryptosystems

We briefly describe in this section the multivariate schemes we implemented and
for which we made extensive benchmarks on a variety of architectures.

3.1 QUAD stream cipher

The stream cipher quad is a practical stream cipher with some provable security
which was introduced [2] by C. Berbain, H. Gilbert, and J. Patarin. The security
proof reduces the distinguishability of the keystream generated by quad to the
hard problem of solving randomly generated quadratic systems over finite field
GF(2).

x

Sin(x) Sout(x)

The keystream generation makes use of two systems Sin and Sout
of multivariate quadratic equations both sharing the same

n unknowns over GF(q), as is described by the figure
on the left. The first system Sin is used to update

the internal state and thus contains n equations,
whereas the second system Sout produces the
keystream and contains m − n equations. As
explained in [2], the quadratic systems Sin and

Sout, though randomly generated, are both publicly known.
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We will restrict our study to the conservative case m = 2n, that is both
systems Sin and Sout contain n quadratic equations in the n bits of the internal
state. Given an n-bit internal state x = (x1, . . . , xn), the generation amounts to
iterating the following steps:

– compute
(
Sin(x), Sout(x)

)
=
(
Q1(x), . . . , Q2n(x)

)
, from the internal state x;

– output the sequence Sout(x) =
(
Qn+1(x), . . . , Q2n(x)

)
of n keystream bits;

– update the internal state x with the sequence Sin(x) =
(
Q1(x), . . . , Qn(x)

)
.

The parameters recommended by the authors are m = 2n and n = 160
over field GF(2). We made implementations for this parameters and over fields
GF(24) and GF(28). This allows us to study the impact of changing the size
of the field over the performances. However there is no security arguments over
fields larger than GF(2), since the security proof of [2] is only done over GF(2).
In particular over GF(28) the number of variables becomes two small to provides
a security of 280.

3.2 SFLASH signature scheme

The signature scheme sflash proposed in [1] (sometime referred to as sflash v2)
was selected as a finalist of the NESSIE project and has resisted attacks so far. It
is build around the C∗ scheme of T. Matsutomo and H. Imai [7] with K = GF(27)
as ground field, but where some of the public equations have been removed. The
secret key consists of two invertible linear transformations L1 and L2 defined
over K37 together with an isomorphism ϕ : K37 → L, where L is an extension of
degree 37 of K defined by L = K[y]/(y37 + y12 + y10 + y2 + 1).

The verification algorithm recognizes σ = (σ1, . . . , σ37) as the signature of a
message µ = (µ1, . . . , µ26) if and only if equation

µ = L2

(
ϕ−1

[
ϕ
[
L1(σ)

]12811+1
])

holds. Since the exponentiation x 7→ x12811+1 is K-quadratic, the public key
which gives the values of µ1, . . . , µ26 in terms of the variables σ1, . . . , σ37 is
nothing but a system of 26 multivariate quadratic equations in 37 unknowns
over the finite field GF(27).

3.3 Rainbow signature scheme

Rainbow is a signature scheme proposed in [5] which is intended to rival sflash.
However from a security point of view, Rainbow has been recently broken [3]. The
public key of Rainbow consists of a set of 27 multivariate quadratic polynomi-
als F̄1, . . . , F̄27 in 33 unknowns over the finite field GF(28). The general problem
of solving such a set of multivariate polynomials being hard, those polynomials
are constructed in a special way using the uov construction several times in an
embedded manner to build a trapdoor.
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The Rainbow signature scheme has four uov layers and parameters v1 = 6,
v2 = 12, v3 = 17, v4 = 22, and v5 = 33. Each layer k is made of a as a set Pk of
polynomials of the special form:∑

1≤j≤vk<i≤vk+1

αi,j xixj +
∑

1≤i,j≤vk

βi,j xixj +
∑

1≤i≤vk+1

γi xi + δ.

Such polynomials are Oil and Vinegar polynomials since no monomial of de-
gree two has both variables coming from the set Ok = {xvk+1, xvk+2, . . . , xvk+1},
whereas there are monomials of degree two where both variables come from the
set Vk = {x1, . . . , xvk

}. Hence, variables from the set Ok are called oil variables
of layer k, and variables from the set Vk are called vinegar variables of layer k.

The first layer of Rainbow is made of 6 polynomials randomly chosen from P1,
the second layer is made of 5 polynomials randomly chosen from P2, the third
layer is made of 5 polynomials randomly chosen from P3, and the last layer is
made of 11 polynomials randomly chosen from P4. So the resulting internal map
of Rainbow is:

F : GF(28)33 −→ GF(28)27,
(x1, . . . , x33) 7−→

(
F1(x1, . . . , x33), . . . , F27(x1, . . . , x33)).

Once again, the public key F̄ is obtained by applying to F a randomly chosen
change of variables L1 of GF(28)33 as well as a bijective linear output mixing L2

of GF(28)27, eventually obtaining the multivariate quadratic system:

F̄(z1, . . . , z33) = L2 ◦ F ◦ L1(z1, . . . , z33).

3.4 PMI+ encryption scheme

The PMI+ [4] is a doubly perturbed C∗ scheme. As with C∗, there is an exponen-
tiation F : x 7→ x24+1 defined over a finite field GF(284), and two invertible linear
transformations L1 and L2 respectively defined over GF(284) and GF(298). Let
us denote by (f1, . . . , f84) the binary component of the quadratic system in the
84 binary unknowns defined by F .

Additionally, randomly chose 14 quadratic polynomials q1, . . . , q14 in the
84 unknowns x1, . . . , x84 defined over GF(2) and a linear application Z of
rank 6 from the 84 unknowns to six binary variables z1, . . . , z6. Also randomly
chose 98 quadratic polynomials ρ1, . . . , ρ98 in 6 binary unknowns.

The public key is given by the expansion of the following composition:

L2 ◦ (f1 + ρ1 ◦ Z, . . . f84 + ρ84 ◦ Z, . . . q1 + ρ85 ◦ Z, . . . q14 + ρ1 ◦ Z) ◦ L1,

which is a multivariate quadratic system of 98 equations in 84 unknowns defined
over GF(2).
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4 Implementations and Performance Results

This section exposes the benchmarks we conducted on our various implementa-
tions of the multivariate cryptosystems presented in the previous section. These
benchmarks were done on several computer architectures. We used a modified
version of the eSTREAM Testing Framework made by C. de Cannière [6] to
evaluate the performance of our implementations when compiled with different
compilers and compiling options. We mostly used compilers gcc-4, gcc-3.4,
gcc-3.3, and gcc-2.95, although we also used Intel’s icc compiler where sup-
ported. The following lists our set of machines together with a description of the
processor installed:

name vendor processor frequency L2 cache
M1 Intel Pentium 4 2505 MHz 512 kB
M2 Intel Pentium M 1862 MHz 2048 kB
M3 Intel Xeon 2784 MHz 512 kB
M4 AMD Opteron 2197 MHz 1024 kB
M5 AMD AMD64 1790 MHz 512 kB
M6 AMD Athlon XP 2162 MHz 512 kB
M7 Power PC G3 900 MHz 512 kB

All our implementations are written in ansi C. Of course it is possible to
improve the efficiency of these implementations by writing assembly code. How-
ever using generic code makes it possible to compare the different architectures
and to evaluate cache effects.

For all versions of quad and pmi+, speed figures are given in cycles/byte and
in Mbits/second, since these are ciphers. For the sflash and Rainbow signature
schemes, speed is given in cycles/byte and we also give the overall time needed
to verify the signature.

4.1 Practical implementations of quad over GF(2)

Our fastest implementation over GF(2) uses two techniques described in the pre-
vious sections: we generate only the non-zero monomials and use the differential
trick. Notice that since we implement a quadratic system of 320 polynomials in
160 unknowns the total amount of storage required is about 518 K bytes so it
explains the penalty on machines with 512 K bytes L2 cache.

Table 1. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

32 bit 7057 3746 4600 2930 3205 4866 4983

64 bit 2081 2636
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Table 2. Speed in Mbits/second

version M1 M2 M3 M4 M5 M6 M7

32 bit 2.83 3.98 4.84 6.00 4.47 3.55 1.44

64 bit 8.45 5.43

4.2 Practical implementations of quad over GF(24)

We made five different implementations of quad defined over GF(24) with 40 un-
knowns and 80 polynomials. Each of these variants uses the technique of precom-
puting the contribution each monomial to all polynomials described before but
with either one, two, or four tables. Implementations also have distinct monomial
generation strategies.

The storage required by the coefficients of the system is about 32 K bytes.
Using only one lookup table, we need to store 24 − 1 times 32 K bytes, that
is 492 K bytes. This value is quite close to the amount of L2 cache on some
machines and thus we also implemented a version with two lookup tables. Using
two lookup tables requires storing 22 − 1 times 32 K bytes that is about 197 K
bytes. Experimental results show that using one table is always better except on
the Power PC.

Table 3. Speed in cycles/byte

monomials tables version M1 M2 M3 M4 M5 M6 M7

näıve 2 luts 32 bit 2526 2364 2604 2134 2149 2576 1010

näıve 2 luts 64 bit 1617 1732

näıve 1 lut 32 bit 2390 1395 1704 1157 1190 1546 1419

näıve 1 lut 64 bit 994 1639

rotation 2 luts 32 bit 3468 2360 3452 2111 2154 2471 977

rotation 2 luts 64 bit 921 1335

rotation 1 lut 32 bit 2858 1357 2014 1139 1192 1514 1435

rotation 1 lut 64 bit 921 1359

bitslice 4 luts 32 bit 1906 1204 1849 1003 990 1257 874

bitslice 4 luts 64 bit 745 885

For the first two implementations, we chose to generate the monomials the
näıve way, and used either one or two lookup tables. For the third and fourth
implementations, we used the rotation technique, and either one or two lookup
tables. The last implementation, which is the fastest, uses bitslice multiplica-
tion to generate the monomials and four lookup tables of 32 K bytes, which
corresponds to the contribution of each of the four bits of any monomial.
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Table 4. Speed in Mbits/second

monomials tables version M1 M2 M3 M4 M5 M6 M7

näıve 2 luts 32 bit 7.93 6.30 8.55 8.24 6.66 6.71 7.13

näıve 2 luts 64 bit 10.87 8.27

näıve 1 lut 32 bit 8.38 10.68 13.07 15.19 12.03 11.19 5.07

näıve 1 lut 64 bit 17.68 8.74

rotation 2 luts 32 bit 5.78 6.31 6.45 8.33 6.65 7.00 7.37

rotation 2 luts 64 bit 19.08 10.73

rotation 1 lut 32 bit 7.01 10.98 11.06 15.43 12.01 11.42 5.02

rotation 1 lut 64 bit 19.08 10.54

bitslice 4 luts 32 bit 10.51 12.37 12.05 17.52 14.46 13.76 18.24

bitslice 4 luts 64 bit 23.59 16.18

4.3 Practical implementations of quad over GF(28)

We implemented two variants. Both of them share the monomial/coefficient
multiplication precomputation technique. Since the coefficient set can definitely
not be stored 255 times (it would require more than 2 M bytes), we store two
lookup tables of size 25 K bytes instead.

In the first variant, we use variables rotation to generate the monomials,
while in the second variant we use the näıve way to generate the monomials.
Since all variables are 8-bit values, we have direct access to them which explains
the fact that the näıve technique is competitive.

Table 5. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 862 618 883 530 560 699 770

Naive 64 bit 417 464

Rotation 32 bit 978 704 983 603 622 775 493

Rotation 64 bit 497 546

Table 6. Speed in Mbits/second

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 23.25 24.10 25.22 33.16 25.57 24.74 9.35

Naive 64 bit 42.15 30.86

Rotation 32 bit 20.49 21.16 22.66 29.14 23.02 22.31 14.60

Rotation 64 bit 35.36 26.23

Thus, on processor M4, our implementation of quad over GF(28) achieves a
throughput of 4.15 M bytes per second on the 32-bit platform and 5.27 M bytes
per second on the 64-bit platform.
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4.4 Practical implementations of sflash

As described in the previous section, verifying an sflash signature can be
thought of as evaluating a randomly chosen system of 26 quadratic polynomials
in 37 unknowns over the finite field GF(27). We implemented two variants: the
first one uses the näıve technique to generate the monomials, while the second
one uses the rotation technique. Both of them use the precomputation of the
contribution of the monomials to the polynomials with the help of two lookup
tables. The speed measurements are obtained by verifying many signatures for
the same public key.

Table 7. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 934 954 1046 807 848 1072 448

Naive 64 bit 253 253

Rotation 32 bit 1126 863 1124 726 756 981 452

Rotation 64 bit 266 270

The following table also give the overall time required to verify an sflash sig-
nature on the different processors:

Table 8. Time to verify a signature in µs

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 13.79 18.94 13.89 13.58 17.51 18.35 18.41

Naive 64 bit 4.25 5.22

Rotation 32 bit 16.63 17.14 14.93 12.22 15.64 16.78 18.57

Rotation 64 bit 4.47 5.58

It may be of interest to compare those figures with the openssl implementa-
tion of RSA-1024 and RSA-2048 signature verification. On processor M1, those
implementation respectively require 2.15 ms and 3.80 ms to verify a signature.
Our implementation of sflash on the same computer is about 150 times faster
than RSA-1024.

4.5 Practical implementations of Rainbow

Just as with sflash, verifying a Rainbow signature can be thought of as eval-
uating a randomly chosen system of 27 quadratic polynomials in 33 unknowns
defined over the ground field GF(28). Our implementation follows the same
strategy as the fastest implementation of quad over GF(28). The speed mea-
surements are obtained by verifying many signatures for the same public key. We
also give the overall time needed to verify a signature on the different processors.
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Table 9. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 1016 882 1068 719 750 989 479

Naive 64 bit 262 259

Table 10. Time to verify a signature in µs

version M1 M2 M3 M4 M5 M6 M7

Naive 32 bit 13.37 15.63 12.66 10.79 13.82 15.10 17.57

Naive 64 bit 3.93 4.77

4.6 Practical implementations of pmi+

The multivariate quadratic system underlying pmi+ is made of 98 polynomials
in 84 unknowns over GF(2). Our implementation uses the same techniques as
quad’s implementation over GF(2), but since the numbers of variables and of
polynomials are much smaller, the implementation is much faster. Additionally,
the system only requires 100 K bytes of storage, so that there is no cache effect.

Table 11. Speed in cycles/byte

version M1 M2 M3 M4 M5 M6 M7

32 bit 1443 1259 1440 909 921 1180 589

64 bit 768 821

Table 12. Speed in Mbits/second

version M1 M2 M3 M4 M5 M6 M7

32 bit 13.89 11.83 15.47 19.34 15.55 14.66 12.22

64 bit 22.89 17.44

5 Conclusion

In this paper we presented several methods for efficiently implementing mul-
tivariate quadratic systems of equations. We applied these techniques to im-
plement several multivariate cryptosystems: sflash, Rainbow, pmi+, and the
stream cipher quad. Our implementations were run on a large variety of archi-
tectures and appear to be quite efficient. A critical parameter when it comes
to optimizations is the size of L2 cache available. Consequently, new processors
with larger L2 cache leave more room for further improvement.
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