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Abstract In this paper we consider the cryptanalysis of the block cipher
SMS4. The cipher has received much recent attention due its simplicity
and prominence (it is used in wireless networks in China) and a range of
differential attacks break up to 21 of the 32 rounds used in SMS4. Here
we consider the application of linear cryptanalysis to the cipher and we
demonstrate a simple attack on 22 rounds of SMS4. We also consider
some advanced linear cryptanalytic techniques which, under the best
conditions for the cryptanalyst, might (just) extend to 23 rounds.

1 Introduction

In this paper we consider the security of the block cipher SMS4 which is reputedly
mandated for wireless networks in China [10]. A Chinese description of the cipher
was made public in 2006 by the Chinese government, and the first analysis in the
open community was published in 2007 [10]. The cipher takes a 128-bit block
and key, and it consists of 32 simple rounds. Its intriguing design encourages
analysis; something which is due in no small part to the fact that minor variants
of the cipher are exceptionally weak.

The first open analysis of a reduced-round version of SMS4 examined the
algebraic nature of the algorithm—thereby uncovering the construction of the
S-box—and yielded a saturation attack over 13 rounds using 216 chosen plaintext
pairs and 2114 operations [10]. This was followed by a differential attack on 14
rounds and then by an impossible differential attack on 16 rounds with the
claimed requirements of 2105 chosen plaintext pairs and 2107 operations [11].
These are rather complex attacks, and a more natural differential attack has
been revealed that suggests that 21 rounds could be compromised using 2118

chosen plaintext pairs and 2126.6 operations [22]. This is the previous best known
attack in the literature.

In this paper we present the first reported application of linear cryptanalysis
to SMS4. Apart from DES [15], there are few ciphers for which linear cryptanal-
ysis yields a more efficient attack than differential cryptanalysis. However, for
SMS4 we propose an attack on 22 rounds of the cipher with less than 2119 known
plaintexts and a work effort roughly equivalent to 2117 22-round SMS encryp-
tions. The attack can be clearly described and the necessary components have
? Partially supported by the national research project RFIDAP ANR-08-SESU-009-03.
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been experimentally verified. We also consider attacks on 23 rounds of SMS4
and highlight some future research directions.

2 Description of SMS4

We briefly describe the block cipher SMS4, but first we establish our notation.

Notation. For the most part we will be working with 32-bit words, though the
context will be clear when we restrict ourselves to bytes. The left rotation (resp.
right rotation) of a word x by b bit positions will be denoted x<<<b (resp. x>>>b).
The remaining notation is standard in the cryptographic literature.

Encryption and decryption. SMS4 is a 32-round block cipher with a 128-bit
key and block. It is an unbalanced Feistel cipher, that repeatedly uses an 8-bit S-
box S. This is described in the appendices and it is, by way of construction [10],
closely related to the AES S-box [16]. We define the L function and the γ function
as follows

L(x) = x⊕ (x<<<2)⊕ (x<<<10)⊕ (x<<<18)⊕ (x<<<24)
γ(x) = (S[x31...24] || S[x23...15] || S[x15...8] || S[x7...0]).

The action of the round function f on input Xi−1 to the ith round of SMS4 is
given by f(Xi−1) = L(γ(Xi−1⊕ki). Two rounds of SMS4 are shown in Figure 1.

The SMS4 S-box.

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -a -b -c -d -e -f
0- d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05
1- 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99
2- 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62
3- e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6
4- 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8
5- 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35
6- 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87
7- d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e
8- ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1
9- e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3
a- 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f
b- d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51
c- 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8
d- 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0
e- 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84
f- 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48
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The key schedule. The key schedule is similar to the encryption function.
Each subkey ki is derived as one word from the output of a single round of
SMS-like encryption where the “key” for each round i is a constant g(i) (to be
defined below). The plaintext for the start of the key generation is the 128-bit
user-supplied key K[127...0]. The round function for the SMS-like encryption is
given by

L′(x) = x⊕ (x<<<13)⊕ (x<<<23)
γ(x) = (S[x31...24] || S[x23...15] || S[x15...8] || S[x7...0])

so only the L-function is changed in comparison with encryption. At the start,
the user-supplied key is xor-ed with a constant

T = 0xa3b1bac6 0x56aa3350 0x677d9197 0xb27022dc,

and the initialization of the generation of the subkeys1 is as follows:

k−3 = K[127...96] ⊕ T[127...96], k−2 = K[95...64] ⊕ T[95...64],

k−1 = K[63...32] ⊕ T[63...32], k0 = K[31...0] ⊕ T[31...0].

The key ki for the ith round, for 1 ≤ i ≤ 32 is computed as

ki = ki−4 ⊕ L′(γ(ki−3 ⊕ ki−2 ⊕ ki−1 ⊕ g(i)))

where each constant g(i) is defined by

g(i) = ((28× (i− 1)) || (28× (i− 1)+7) || (28× (i− 1)+14) || (28× (i− 1)+21)).

2.1 red-SMS4: A small version of SMS4

We confirm some of the work in this paper with experiments, and for these we
will need to define a reduced-version of SMS4. This will be a block cipher with
a 64-bit key and block size which uses a 4-bit S-box Sr. For experiments we
chose the S-box used in present [2]. We can define a reduced Lr function and
a reduced γr function as follows:

Lr(x) = x⊕ (x<<<8)⊕ (x<<<10)
γr(x) = (Sr[x15...12] || Sr[x11...8] || Sr[x7...4] || Sr[x3...0]).

Lr was built using the rotations that appear in L modulo 16. In this way, the
round function fr used in the ith round of reduced-SMS4 is given by fr(Xi−1) =
Lr(γr(Xi−1 ⊕ ki). A reduced version of the key schedule requires us to change
the linear function L′ to L′r just as we changed L to Lr in the encryption routine,
and to revise the per-round constants to gr(i) = ((28×(i−1)) ||(28×(i−1)+7)).
1 This is slightly different to other descriptions so as to accommodate the natural
numbering of rounds starting with 1.
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3 Linear cryptanalysis

While linear cryptanalytic methods appeared in [21], the linear cryptanalytic
attack and its application to DES was developed by Matsui [12,13]. The basic
idea is to find a linear approximation to the action of the block cipher. By this
we mean a linear equation that includes a bits of the plaintext Pr1 , . . ., Pra ,
together with b bits of the ciphertext Cs1 , . . ., Csb and a single bit of key-related
information κ. Borrowing the vector inner-product, we will use the notation α ·P
to denote the sum of plaintext bits Pr1⊕ . . . ⊕Pra where α =

∑a
j=1 2rj and α is

called a linear mask. We will then write a single linear approximation as

α · P ⊕ β · C = κ. (1)

If κ (the exclusive-or of subkey bits) is fixed, then Equation 1 will be correct with
probability p = 1

2 + ε and we say that the linear approximation has a bias of ε.
Given a bias of sufficiently large absolute value |ε| and sufficiently many known
plaintext/ciphertext pairs, the value of κ can be deduced thereby revealing one
bit of key information. Throughout the paper the term “bias” will refer to its
absolute value.

It is well-known that we can recover more bits of the key by using Matsui’s
Algorithm 2 [12]. Here we use a linear approximation over several inner rounds,
say rounds b to c of the r-round cipher, and this approximates one inner bit of
key information (which is a function of the subkeys kb, . . ., kc). Since the inputs
to this linear approximation are a function of the plaintext, the ciphertext, and
the outer subkeys k1, . . ., kb−1 and kc+1, . . . , kr, if we were to test for a bias
as part of an exhaustive search over these outer key bits, then we would expect
a bias to appear for the correct guess. In this way we can recover more key
information and derive a more practical attack.

Clearly the basic building block to all these attacks will be the linear ap-
proximation, and to build a linear approximation we approximate individual
components of the cipher and join these together. We will therefore use the fol-
lowing notation for the linear approximation of a component f , say, where we
write α f→ β if α · X = β · f(X) with some associated bias ε. Approximations
to larger components of a block cipher, such as a round, can be written in the
same way.

3.1 Linear cryptanalysis and SMS4

To find a linear approximation of SMS4, we first compute the biases of all linear
approximations α S→ β to the S-box. Then we consider the evolution of a linear
mask through the function L. For this, we define the function

L2(x) = x⊕ (x>>>2)⊕ (x>>>10)⊕ (x>>>18)⊕ (x>>>24)

and we observe the following. Since for bit-wise rotations α ·(x<<<i) = (α>>>i) ·x,
we have for all 32-bit inputs x, and all linear masks α, that α ·L(x) = L2(α) · x.
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β − α⊕ β α⊕ β

α β β β

Xi+1,0 Xi+1,1 Xi+1,2 Xi+1,3

Xi−1,0 Xi−1,1 Xi−1,2 Xi−1,3

− − − α

ki

ki+1

Figure 1. Two rounds of SMS4 along with a two-round linear approximation using
masks α and β. The input to round i is Xi−1,0 ||Xi−1,1 ||Xi−1,2 ||Xi−1,3.

As can be seen from Figure 1, we can identify the potential for two-round
linear characteristics of the following form:

(β, 0, α⊕ β, α⊕ β)→ (α, β, β, β)→ (0, 0, 0, α).

Such a linear approximation would require the approximation α f→ β in the first
round and β f→ α in the second. Interestingly, by setting β = α this reduces to

(α, 0, 0, 0)→ (α, α, α, α)→ (0, 0, 0, α)

and by exploiting the structure of SMS4 in the preceeding three rounds, we
derive a five-round iterative linear approximation, of which only the last two
rounds are active

(0, 0, 0, α)→ (0, 0, α, 0)→ (0, α, 0, 0)→ (α, 0, 0, 0)→ (α, α, α, α)→ (0, 0, 0, α).

Appeared in : SAC 2008, LCNS , pp. 0–,
c© Springer-Verlag Berlin Heidelberg 2008



α L2(α) α L2(α)

0x0011ffba 0x0084be2f 0x007852b3 0x00582b15
0x007905e1 0x005afbc6 0x00a1b433 0x00f1027a
0x00edca7c 0x0083ffaa 0x00fa7099 0x00d20b1d
0x05e10079 0xfbc6005a 0x11ffba00 0x84be2f00
0x3300a1b4 0x7a00f102 0x52b30078 0x2b150058
0x709900fa 0x0b1d00d2 0x7852b300 0x582b1500
0x7905e100 0x5afbc600 0x7c00edca 0xaa0083ff
0x9900fa70 0x1d00d20b 0xa1b43300 0xf1027a00
0xb3007852 0x1500582b 0xb43300a1 0x027a00f1
0xba0011ff 0x2f0084be 0xca7c00ed 0xffaa0083
0xe1007905 0xc6005afb 0xedca7c00 0x83ffaa00
0xfa709900 0xd20b1d00 0xffba0011 0xbe2f0084

Table 1. The relevant bitmasks for the iterative linear approximations in this paper.

To identify a bit-mask α that yields an approximation α f→ α with a good bias,
we use the distribution table for linear approximations of the S-box. In this way
we can list 24 different (α,L2(α)) pairs, where L2(α) gives the mask for the
output from the S-boxes, and each of these 24 five-round linear approximations
holds with a bias of 7

32768 ≈ 2−10.2. These are given in Table 1.

3.2 A distinguisher for 18-round SMS4

It is straightforward to see that a classical application of linear cryptanalysis
gives us an 18-round distinguisher for SMS4. We can concatenate three of the
five-round iterative approximations to give the following 18-round linear approx-
imation with bias ε1:

(0, 0, 0, α) 5 rounds−−−−−−−→ (0, 0, 0, α) 5 rounds−−−−−−−→(0, 0, 0, α)
5 rounds−−−−−−−→ (0, 0, 0, α)→ (0, 0, α, 0)→ (0, α, 0, 0)→ (α, 0, 0, 0)

To combine linear approximations, and to estimate the resultant bias, it is
typical to appeal to the so-called piling-up lemma [12]. The suitability of applying
the piling-up lemma depends on the algorithms in question; for some, such as
DES [15], it gives accurate results while for others, such as RC5 [18], an inter-
round dependence means that the piling-up lemma can be misleading [19]. This
problem can be particularly acute when we have two consecutive active rounds.
However, experimental results below suggest that the piling-up lemma should
remain a reasonable tool to use with SMS4. We therefore estimate the resultant
bias of the 18-round linear approximation to be ε1 = (2−10.2)6 × 25 = 2−56.2.
This means that if we were to use ε−2

1 = 2112.4 known plaintexts then we would
expect our distinguisher to identify non-ideal behaviour in the reduced-round
SMS4 and/or to recover a single bit of key information with a success rate of
97.7% [12]. With regards to the work effort, we need to evaluate a single bit
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and increment a single counter 2112.4 times. This will be a fraction of the work
required to exhaustively search a 128-bit key.

In what follows we will use the 18-round linear approximations of the form
described above, of which there are 24 (see Table 1). It will therefore be conve-
nient to refer to a generic approximation from this class as A18

α .

Experimental confirmation. To confirm the applicability of the piling-up
lemma with the basic linear approximations that we will use, we consider the
equivalent linear approximations in red-SMS4. The bias of the best approxi-
mation over a single active round—for which the input and output mask is the
same—is 2−5. So over five rounds, of which two are active, the linear approxi-
mation (0, 0, 0, α) → (0, 0, 0, α) with α = 0x040c would have a theoretical bias
of 2−9 . We extend this to give a six-round approximation

(α, β, β, β) 1 round−−−−−−−→(0, 0, 0, α) 5 rounds−−−−−−−→(0, 0, 0, α)

with β = 0x0406 and a bias of 2−2.7 for β
fr−−→α. The resultant six-round approx-

imation has a theoretical bias of 2−10.7 and in experiments with 100 keys using
the reduced key schedule and 223 known plaintexts, the measured bias ranged
between 2−10.0 and 2−12.1 with an average of 2−10.7.

On extending to 19 rounds. Taking A18
α we can prepend a single-round

linear approximation of the form (α, β, β, β) → (0, 0, 0, α). Here we can choose
β so as to maximise the bias of this extra round. For each of the valid L2(α)
that we identified in Section 3.1, we find that there are 125 possible values to β
that give a maximum bias of 2−10 over a single round of S-box transformations.
This means that there are 125 × 24 = 3000 19-round linear approximations
with a bias of ε2 = (2−10.2)6 × 2−10 × 26 = 2−65.2. While the bias means that
such approximations aren’t immediately useful to us, the large number of such
approximations makes them a tempting object for more advanced analysis, see
Section 5.1.

4 Advanced techniques

We now use the 18-round approximations A18
α to recover the full 128-bit key.

Standard techniques immediately compromise 20-round SMS4, while a novel ex-
tension of the work of Collard et al [4] extends this to 22 rounds. In the literature
notation, this constitutes a 4R-attack for which there are few precedents.

4.1 An attack on 20-round SMS4

The classical approach to using an 18-round distinguisher is to recover key in-
formation from the two outer rounds of the cipher. We will use the linear ap-
proximations A18

α that have only three active S-boxes in an active round and
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C0 C1 C2 C3

P0 P1 P2 P3

− − − α

α − − −

k1

k20

X1,3

X19,0

A18
α

Figure 2. Intermediate values for the 2R attack on 20-round SMS4.

we will need the following definition: Given mask α, denote the restriction of
a 32-bit word y by α to be Rα(y) where Rα(y) consists of the deletion of bits
corresponding to the inactive byte. For example, given α = 0x0011ffba then
Rα(y) = y&0x00ffffff. Note that this can be viewed as a 24-bit quantity even
when the inactive byte is not in the most significant position.

It is easy to verify the following (see Figure 2). For plaintext P0||P1||P2||P3,
the bit value α ·X1,3 depends solely on α · P0, Rα(P1 ⊕ P2 ⊕ P3), and Rα(k1).
We can make a similar observation on the ciphertext, namely that the bit value
α ·X19,0 depends solely on α · C3, Rα(C0 ⊕ C1 ⊕ C2), and Rα(k20). In our 2R-
attack we will recover the values of Rα(k1) and Rα(k20) giving 48 bits of key
information. The rest of the key can be deduced using exhaustive search.

The data-related information that we need to evaluate the approximation is
α · P0, Rα(P1 ⊕ P2 ⊕ P3), α · C3, and Rα(C0 ⊕ C1 ⊕ C2) and we can consider a
plaintext-ciphertext as being in one of 250 possible classes according to the values
of these quantities. Note that under the same key guess Rα(k1) || Rα(k20), two
plaintext/ciphertext pairs from the same class yield the same values to α ·X1,3

and α ·X19,0. In [4] an efficient 1R-attack is described. We extend this approach
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to give a 2R-attack recovering information from both outer rounds and adopting
an optimisation that means we need only store 248 rather than 250 counters.

1. Take N = 32ε−2 = 2117.4 plaintext/ciphertext pairs.
2. Initialise a set of counters A[0] . . . A[248 − 1] to zero.
3. For each plaintext/ciphertext pair, compute b = α ·P0⊕α ·C3 and increment
A[Rα(P1⊕P2⊕P3)||Rα(C0⊕C1⊕C2)] if b = 0 or decrement it if b = 1, i.e.

A[Rα(P1 ⊕ P2 ⊕ P3)||Rα(C0 ⊕ C1 ⊕ C2)] += (−1)(α·P0⊕α·C3).

4. For each key guess k′ = Rα(k1) || Rα(k20) keep a counter, and compute the
bias generated during the attack as follows:
(a) Taking each x = Rα(P1 ⊕ P2 ⊕ P3)||Rα(C0 ⊕ C1 ⊕ C2) in turn, where

0 ≤ x ≤ 248 − 1, compute the value

c = (−1)(α·f(Rα(k1⊕P1⊕P2⊕P3))⊕(α·f(Rα(k20⊕C0⊕C1⊕C2)).

(b) Add c × A[Rα(P1 ⊕ P2 ⊕ P3) || Rα(C0 ⊕ C1 ⊕ C2)] to the score for key
guess k′.

5. After recovering the 48-bit k′, perform exhaustive search on the remaining
80 bits of key.

We expect to recover the right value to the 48 bits of the key by identifying the
guess which gives the highest score of absolute value; using [20] the correct key
should be recovered with a probability of 99.9%

While the work effort for each plaintext/ciphertext pair in step 3 is much less
than a round of SMS4, we might estimate the work effort for the first three steps
to be equivalent to 2117.4× 1

20 ≈ 2113.1 20-round SMS4 computations. The work
effort for finding the right 48 bits of key material in step 4 is 248 × 248 = 296

basic operations and the work to recover the rest of the key. is 2128−48 = 280

reduced-round SMS encryptions. One point of detail: it is possible (see below)
that several keys are identified along with the correct one. However this is not
uncommon, and merely extends the search for the remainder of the key.

An optimisation. Even though the work effort for Step 4 is lower than that for
data processing, we can adapt techniques introduced in [4]. Consider initialising
a (248 × 248) matrix M , where rows are indexed by Rα(k1) || Rα(k20) and the
columns indexed by Rα(P1⊕P2⊕P3) ||Rα(C0⊕C1⊕C2). Then the bias for the
ith guess of Rα(k1) ||Rα(K20) is given by

∑248−1
j=0 M(i,j)xj and we can view the

counters A[·] as a column vector x = AT . Following [4], since entry M(i,j) is a
function of i⊕ j the entire matrix M(i,j) can be reconstructed from a single row
or column, and it is possible to compute the product Mx = e with only three
products between a Discrete Fourier Transform matrix and a vector [4].This
means that the complexity of generating a set of final scores for each key, repre-
sented by a vector e is reduced from O((248)2) to 3 × O(248 log2(248)) [4]. The
work effort for data analysis can therefore be estimated as 248 × 3 × 48 ≈ 255.2

basic operations.
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P0 P1 P2 P3

− − − αX2,3

X1,3

k1

k2

A18
α

Figure 3. The upper half of the 4R-attack on 22-round SMS4.

Experimental confirmation. To illustrate this more advanced linear attack,
we use a 10-round version of red-SMS4 with the same linear approximation as
was used in the experiments of Section 3.2, namely (α, β, β, β)→ (α, 0, 0, 0) over
nine rounds. We will recover information about k10, though for red-SMS4 the
mask α we use has two inactive bytes. Recalling the bias of the approximation
is 2−10.7, we take 8× (211)2 = 225 plaintexts. The data is separated according to
the restriction Rα(C0⊕C1⊕C2) and we perform key recovery as outlined in Sec-
tion 4.1, though adapted to the 1R-scenario. For Sr there is a slight complication
with the bit mask α since there are equivalent keys for one of the active nibbles.
Experiments and analysis show that the best score applies to four equivalent key
values, and so we recover at most six bits of k10. With the plaintext amount we
use, we theoretically have a probability of 99.9% to recover the right six bits of
key [20]. In 100 experiments the correct set of keys was recovered 99 times.

4.2 An attack on 22-round SMS4

We useA18
α to make a 4R-attack on 22-round SMS4 (see Figure 3 for the plaintext

side of the attack) and we aim to recover k1, k22, Rα(k2) and Rα(k21). For the
data analysis, we will appeal to the optimisation of Collard et al. [4] described
in Section 4.1.
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1. We take N = 64ε−2 = 2118.4 plaintext/ciphertext pairs.
2. View counters A[0] . . . A[2112 − 1] as a column vector x and set to zero.
3. For each plaintext/ciphertext pair, compute b = α ·P1⊕α ·C2 and increment
A[P1 ⊕ P2 ⊕ P3 || Rα(P0 ⊕ P2 ⊕ P3) || Rα(C0 ⊕ C1 ⊕ C3) || C0 ⊕ C1 ⊕ C2] if
b = 0 or decrement it if b = 1.

4. Define (conceptually) the (2112×2112) matrix M(i,j) where rows are indexed
by the key guess k′ = k1 || Rα(k2) || Rα(k21) || k22 and columns indexed by
x = P1⊕P2⊕P3 ||Rα(P0⊕P2⊕P3) ||Rα(C0⊕C1⊕C3) ||C0⊕C1⊕C2. Recall
we need only store the first column of this matrix M(i,j) since all values for
subsequent computations can be reconstructed from a single row/column.
(a) Compute the values in the first column as (−1)b where

b = α · f(Rα(k21 ⊕ C0 ⊕ C1 ⊕ C3)⊕ f(k22 ⊕ C0 ⊕ C1 ⊕ C2))
⊕ α · f(Rα(k2 ⊕ P0 ⊕ P2 ⊕ P3)⊕ f(k1 ⊕ P1 ⊕ P2 ⊕ P3))

(b) Efficiently compute Mx = e using [4]. This gives the right result since

α ·X2,3 = α · f(Rα(k2)⊕Rα(P2 ⊕ P3 ⊕X1,3))⊕ α · P1

= α · f(Rα(k2)⊕Rα(P0 ⊕ P2 ⊕ P3)
⊕ f(k1 ⊕ P1 ⊕ P2 ⊕ P3))⊕ α · P1

and we have a similar expression for the ciphertext side.
5. Recover the 112-bit k′ from e and search the remaining bits of the key.

The only hypothesis needed to apply [4] to the 22-round attack is that the
(2112 × 2112) matrix M(i,j) (see optimisation to Section 4.1) should only depend
on i⊕ j, which is the case for the expression in Step 2. We expect to recover the
right value to the 112 bits of the key from the guess with the highest score of
absolute value. With 2118.4 plaintexts, the method of [20] suggests that we are
very likely to recover the correct value, see Table 2. The work effort for Steps
1-3 can be estimated as 2118.4 × 1

22 ≈ 2113.9 22-round SMS4 computations while
the effort in Step 4 is approximately 2112×3×112× 1

22 ≈ 2115.9 22-round SMS4
computations, and this dominates the attack.

5 Ongoing and future research

It is natural to consider some more advanced techniques in trying to attack
more rounds of SMS4. In this section we consider the use of multiple linear
approximations as well as the use of chosen-plaintexts.

5.1 Multiple linear approximations

Multiple linear approximations were first proposed in [6,7] and they have been
the subject of much recent analysis [3,5]. Here we take m different linear approx-
imations, where we use κj to denote a single bit of key information,

αj · P ⊕ βj · C = κj .
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work work step 4 work step 4 work success
r texts mem. steps 1-3 (w/o [4]) (w. [4]) step 5 (%)

19 2116.4 224 2112.2 243.8 226 2104 99.5
20 2117.4 248 2113.1 291.7 250.9 280 99.9
21 2117.4 280 2113.0 (2155.6) 283.5 248 84.8
21 2118.4 280 2114.0 (2155.6) 283.5 248 99.9
22 2117.4 2112 2112.9 (2219.5) 2115.9 216 17.7
22 2118.4 2112 2113.9 (2219.5) 2115.9 216 99.9

Table 2. The estimated work efforts for a range of linear cryptanalytic attacks on
r-round SMS4 for 19 ≤ r ≤ 22. Work is estimated in terms of the number of r-round
encryptions (for appropriate r) with that exceeding 2128 placed in parentheses.

The purpose is to use several approximations to reduce the number of plaintexts
when keeping the same probability of sucess. Let εj denote the theoretical bias
of the jth approximation and let ejkouter

denote the experimental bias of the jth

approximation observed when using the guess kouter for the outer key bits2. If,
with sufficiently many plaintexts, we compute

min
kouter

min
(κ1,...,κm)∈{0,1}m

m∑
j=1

(εj − (−1)κjejkouter
)
2
,

then the minimum value will be given by the correct values of kouter and the
correct values of the m bits of internal key represented by (κ1, . . . , κm).

A straightforward application of this method needs 2|k|+m computations.
However this can be reduced if we introduce σjk where σ

j
k = 1 if sgn(εj) = sgn(ejk)

and zero otherwise. Then we observe that, for each j,

min
κj∈{0,1}

(εj − (−1)κjejk)
2

= (εj − (−1)σ
j
kejk)

2

and so we have the equality

min
kouter

min
(κ1,...,κm)∈(0,1)m

m∑
j=1

(εj − (−1)κjejkouter
)
2

= min
kouter

m∑
j=1

(εj − (−1)σ
j
kouter ejkouter

)
2

.

This requires m2|kouter| computations, though we only recover the correct value
to kouter. However this is usually the most important block of key information
to recover.
2 An equivalent approach considers the imbalance which is double the bias [3].
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Application to SMS4. To gauge the possible limits of linear cryptanalysis, we
will optimistically assume that the gain that can be made when using multiple
linear approximations is linear in the number of approximations. We will then use
the techniques above to combine a set of different linear 19-round approximations
and illustrate the basis for a possible attack on 23-round SMS4.

To do this we need a set of linear approximations and we will choose 125
19-round approximations A19

αβ where these are the extensions of a given, fixed,
18-round distinguisher A18

α by the 125 choices for β. (These approximations were
identified in Section 3.2). We denote by ε the theoretical bias of 2−65.2 which is
the same for each of the A19

αβ .

1. Take N = 2125.4 plaintext/ciphertext pairs.
2. For each β view counters A[β][0], . . ., A[β][2112 − 1] as a column vector xβ

and set this to zero.
3. For each β and each plaintext/ciphertext pair, compute b = α ·P2⊕β ·P0⊕
β · P1 ⊕ β · P3 ⊕ α · C2 and increment A[β][P1 ⊕ P2 ⊕ P3 || Rα(P0 ⊕ P2 ⊕
P3) ||Rα(C0 ⊕ C1 ⊕ C3) || C0 ⊕ C1 ⊕ C2] if b = 0 or decrement it if b = 1.

4. Define for each β (conceptually) the (2112 × 2112) matrix Mβ
(i,j) where rows

are indexed by the outer key guess kouter = k1 ||Rα(k2) ||Rα(k21) || k22 and
columns indexed by x = P1 ⊕ P2 ⊕ P3 || Rα(P0 ⊕ P2 ⊕ P3) || Rα(C0 ⊕ C1 ⊕
C3) ||C0⊕C1⊕C2. Recall we need only store the first column of this matrix
Mβ

(i,j) since all values for subsequent computations can be reconstructed from
a single row/column.

5. Compute the values in the first column as (−1)b where

b = α · f(Rα(k21 ⊕ C0 ⊕ C1 ⊕ C3)⊕ f(k22 ⊕ C0 ⊕ C1 ⊕ C2))
⊕ β · f(Rα(k2 ⊕ P0 ⊕ P2 ⊕ P3)⊕ f(k1 ⊕ P1 ⊕ P2 ⊕ P3))

6. Efficiently compute Mβxβ = eβ using [4].

7. For each guess to kouter, compute
∑
β (ε− (−1)σ

β
kouter eβkouter

)
2

.
8. Assume that the minimum value is given by the correct guess for the 112-bit
kouter and then search the remaining bits of the key.

The work effort for this attack is dominated by Step 3. To derive the maxi-
mum number of plaintexts we can use, we observe that the work effort of Step 3
can be expressed as 125×N

23 23-round SMS4 computations. To give an academic
attack, we need this to be less than 2128 23-round SMS4 computations and so
we have N ≤ 23×2128

125 ≈ 2125.4 for a valid attack.
However 2125.4 corresponds to around 4× (265.2)2

125 , but since we are recovering
112 bits of key information the success rate [20] will be almost negligible. Thus
while it is conceivable that 23 rounds could be attacked (academically) we feel
that this is somewhat optimistic.

Unfortunately the reduced version of SMS4 used earlier doesn’t exhibit differ-
ent linear approximations with the same bias. Intead we were able to experiment
on a different reduced cipher design, but it was too far-removed from SMS4 for us

Appeared in : SAC 2008, LCNS , pp. 0–,
c© Springer-Verlag Berlin Heidelberg 2008



to be able to draw any substantive conclusions. Our experiments demonstrated
improvements to the number of plaintexts required in a successful attack, but
the probability of success was somewhat less than anticipated by theory. We
therefore leave it as an object of future research to provide a sound estimate for
the effectiveness of multiple linear approximations on SMS4.

5.2 On using chosen plaintext

Several extensions to linear cryptanalysis consider the use of chosen plaintext.
One of these is described by Knudsen and Mathiassen [8]. In early work for this
paper we considered using variants of this technique and at first sight it seemed
to be well-suited to SMS4. However technical complications meant that it was
hard to use these techniques directly with the 18-round distinguisher and we were
unable to get any satisfactory advantages. We also considered using differential-
linear cryptanalysis [9] but our preliminary conclusion was somewhat negative.
We therefore leave it as an open problem to decide whether chosen plaintext can
give any real advantage over the typical known plaintext approach.

6 Conclusions

In this paper we have considered the cryptanalysis of the block cipher SMS4. The
cipher is both actively deployed and of an elegant and simple design, making it
of considerable interest to the cryptanalyst. While much of the preceeding work
is concentrated on the differential cryptanalysis of SMS4, by turning to linear
cryptanalysis we have demonstrated some simple and effective attacks. These
yield results which are superior to all previous claims and which, therefore, give
the best current attacks on SMS4.
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