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Abstract. SNOW 2.0, a software oriented stream cipher proposed by
T. Johansson and P. Ekdahl in 2002 as an enhanced version of the
NESSIE finalist SNOW 1.0, is usually considered as one of the strongest
stream ciphers designed so far. This paper investigates the resistance of
SNOW 2.0 against algebraic attacks. This is motivated by the fact that
the main source of non-linearity in SNOW 2.0 comes from a permutation
build upon the AES S-box, which inputs and outputs are well known to
be related by numerous quadratic equations. We show that a slightly
modified version of SNOW 2.0 is susceptible to an algebraic attack with
time complexity about 250, and which requires no more than 1000 words
of output. We then explore various ways to extend this attack to the
actual stream cipher.
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1 Introduction

SNOW 2.0 [9] is a software oriented stream cipher proposed by T. Johansson and
P. Ekdahl in 2002 as a replacement of an earlier version named SNOW 1.0 [8].
SNOW 2.0 is generally considered as one of the strongest stream cipher de-
signs currently available, together with ciphers like the Shrinking Generator [3],
SCREAM [12], and carefully initialized versions of RC4 [11]. SNOW 1.0 was one
of the finalists of the European project NESSIE. One of the main reasons for
the rejection of SNOW 1.0 from the NESSIE portfolio of recommended cryp-
tographic primitives—which eventually lacked a stream cipher design—was the
discovery of a statistical distinguisher with time complexity 295 due to Cop-
persmith et al. [2]. A key recovery attack of expected complexity 2224 against
SNOW 1.0 was also found H. Hawkes and G. Rose [13]. Both attacks require a
known key stream length of 295. Those attacks motivated the introduction of a
new version of SNOW, SNOW 2.0 [9], which eliminated at the same time some
other minor flaws. The most characteristic features of SNOW 2.0 are

– an LFSR defined over a large field, GF(232) with a new feedback polynomial
as to avoid the flaws detected in the previous design, SNOW 1.0;
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– a finite state machine involving two non-linearly updated memory registers
of size 32 bits. The non-linearity results from two modular additions, and a
32 bit to 32 bit function S based on the well-known and highly studied AES
S-box [14].

The best attack against SNOW 2.0 so far is a distinguishing attack of com-
plexity 2225 due to D. Watanabe, A. Biryukov, C. de Cannière [16], and re-
quires 2225 key stream words. It consists in an enhanced variant of the lin-
ear masking method [2] which exploits the feedback polynomial of the LFSR
over GF(232) instead of requiring low weight multiples with GF(2) coefficients,
as in the original attack.

This paper investigate the resistance of SNOW 2.0 against algebraic attacks.
Although the relevance of such attacks in the context of block ciphers—like
AES, for instance—remains unclear, it has been proved to be of interest in the
context of regularly clocked stream ciphers [5, 6, 1]. Considering that SNOW 2.0
is a regularly clocked stream cipher which non-linearity mainly rests on the AES
S-box, it seems natural to probe its resistance against algebraic attacks.

We first establish that if the function S based on the AES S-box was the only
source of non-linearity, SNOW 2.0 would be vulnerable to a very efficient alge-
braic attack. More precisely, we consider the close variant of SNOW 2.0 obtained
by replacing the two modular additions by additions over GF(232), leaving the
other parts (LFSR, S function based on AES S-box...) unchanged. We explain
how to recover the initial state of the LFSR using a linearization attack of com-
plexity about 250, requiring no more than 1000 clocks of key stream. We then ex-
amine the consequences of this result for the actual stream cipher, and show that
the knowledge of a small key stream sequence (slightly more than 17 key stream
outputs) allows the attacker to write a rather large—still, overdetermined and
sparse—system of quadratic equations. Solving of such sparse quadratic systems
and its complexity are not yet fully understood, but there is a growing research
effort on the subject, due in large part to its potential application to the AES
block cipher standard [15, 7].

The paper is organized as follows. Section 2 provides a brief description of
the SNOW 2.0 stream cipher. Section 3 describe the algebraic attack against a
slightly modified SNOW 2.0, while Sec. 4 analyzes different means to extend this
attack to the actual stream cipher.

2 Description of SNOW

The stream cipher SNOW 2.0 is made of a linear feedback shift register (LFSR)
with sixteen 32 bit words and a finite state machine (FSM) with two 32 bit
memory registers. SNOW 2.0 mixes additions over GF(232) hereafter denoted
by ‘⊕’, together with additions modulo 232 denoted by ‘�’.

2.1 The Linear Feedback Shift Register

The linear feedback shift register (LFSR) is defined over GF(232), which allows
good performance for software implementations. It is made of sixteen 32 bit

Appeared in A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 19–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



words, thus exhibiting 512 bit internal state size. The field of definition can be
further described as GF(232) = GF(2)(α, β), where β is a root of the GF(2)[x]
polynomial x8 + x7 + x5 + x3 + 1, and α is a root of the GF(28)[x] polynomial
x4 + β23x3 + β245x2 + β48x + β239. The feedback polynomial is then defined by

αx16 + x14 + α−1x5 + 1 .

This choice of a tower extension to describe GF(232) is justified by the simple
expression of the feedback polynomial in this context: it only consists of byte
shifts/xors, since each word can be expressed on the base {α3, α2, α, 1}.

In the following, the word that the LFSR outputs at clock t is denoted by st.

2.2 Finite State Machine

rt
1 rt

2
S

st+15 st+11 st+5 st+2 st

zt

×α−1 ×α

Fig. 1. SNOW 2.0

The other part of the stream cipher is a finite state machine (FSM), which
contains two 32 bit memory registers r1 and r2. This FSM is intended to produce
the non-linear part of the stream cipher. To this end, it contains a non-linear
32 bit to 32 bit non-linear bijection denoted by S, based on the AES S-box [14],
and defined as follows. If we decompose the register r1 at clock t on the base
{α3, α2, α, 1} as explained in the above section as rt

1 = at
1α

3+bt
1α

2+ct
1α+dt

1, and
similarly the register r2 at next clock as rt+1

2 = at+1
2 α3 + bt+1

2 α2 + ct+1
2 α + dt+1

2 ,
the rule rt+1

2 = S(rt
1) to update r2 from r1 can be defined as

at+1
2

bt+1
2

ct+1
2

dt+1
2

 =


X X + 1 1 1

X + 1 1 1 X
1 1 X + 1 X
1 X + 1 X 1

×


S(at
1)

S(bt
1)

S(ct
1)

S(dt
1)


where S represents the AES S-box, the matrix is the one MixColumn step in AES
when its four input bytes are considered as elements of the GF(28) definition of
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the AES, i.e. GF(2)[X]/(X8 + X4 + X3 + X + 1). This completes the definition
of the non-linear function S.

Now the rule to update the register r1 from r2 is given by rt+1
1 = rt

2 � st+5.
The output of the FSM at clock t, which we denote by F t, is finally defined
by F t = (rt

1 � st+15)⊕ rt
2. Let us summarize the behavior of the FSM below

rt+1
2

def= S (rt
1) ,

rt+1
1

def= rt
2 � st+5 ,

F t def= (rt
1 � st+15)⊕ rt

2 .

2.3 Output of the Stream Cipher

The output of SNOW 2.0 is a classical example of linear masking, that is the
output of the LFSR is xored with the output of the (non-linear) FSM. Thus
the key stream output at clock t, which we henceforth denote by zt, is defined
by zt = st ⊕ F t, or equivalently by

zt = (st+15 � rt
1)⊕ rt

2 ⊕ st .

2.4 Key Initialization

The stream cipher SNOW 2.0 can be used with 128 bit or 256 bit keys. For the
key initialization, the LFSR is loaded with the secret key K, a publicly known
initialization vector IV , and the two memory registers are set to zero. The cipher
is then clocked 32 times in a special mode where no key stream is produced, and
the FSM output is injected in the feedback value

st+16 def= α−1st+11 ⊕ st+2 ⊕ αst ⊕ F t .

The cipher is then switched into the normal mode described in 2.3, but the first
output of the keystream is discarded.

3 Attack on a modified version of SNOW 2.0

We now describe the algebraic attack against the close variant of SNOW 2.0
where modular additions ‘�’ are replaced with xors ‘⊕’ in its description, while
everything else remains identical.

3.1 Deriving the System

Let us construct a system of equation in the LFSR’s initial state variables alone,
and solve it. In order to do so, we need to eliminate the memory from the set of
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rt
1 rt

2

zt

st+5

st+15 st

S

Fig. 2. a variant of SNOW 2.0

equations. This is done by looking at the key stream generation and the update
rule for the register r1. Indeed, combining those relations{

zt = st+15 ⊕ rt
1 ⊕ st ⊕ rt

2 ,
rt
1 = rt−1

2 ⊕ st+4 ,

which can be further reduced into

rt
2 = rt−1

2 ⊕ zt ⊕ st+15 ⊕ st+4 ⊕ st ,

we get an expression of the register r2, for any clock t, which only involves the
key stream, the LFSR initial state variables s0, . . . , s15, and the initial state r0

2

of the register r2. Put it in equation, for each clock t, there are known binary
coefficients εi

t such that

rt
2 = r0

2

t⊕
i=0

zi
15⊕

j=0

εj
ts

j .

Let us assign t = 0 to the clock of the first key stream output. One easily
checks that the register r1, updated against the rule rt+1

1 = rt
2 ⊕ st+5, benefits

from the same property. (Note that the initial state of the register r1 can be
derived from the knowledge of r0

2 and the relation r0
1 = r0

2 ⊕ s0 ⊕ s15 ⊕ z0.)
In other words, we got rid of the memory, since for any clock t > 0, it can be
expressed linearly in terms of the initial state variables and the initial memory
value r0

2.
The property that the knowledge of the key stream allows to track the linear

functions of r0
2, s0, . . . , s15 contained in r1 and r2 may be visualized on Fig. 3.

(Note that a similar property involving non-linear expressions, also holds for
the actual stream cipher.) Now we need to derive some equations involving the
initial LFSR state variable, and r0

2. Those are obtained from the second update
rule, namely rt+1

2 = S(rt
1). Since the non-linear function S maps the four bytes

of rt
1 to the four bytes of rt

2 via the AES S-box, and then mixes the resulting
bytes linearly at the bit level, we are able to write down 156 linearly independent
quadratic equations relating the bits of rt

1 = rt
2 ⊕ st ⊕ st+15 ⊕ zt and the bits

of rt+1
2 .
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rt
1 rt

2

zt

st+5

st+15 st

Fig. 3. tracking memory registers r1 and r2

To explain why, it is suffices to recall the well known property of the AES
S-box: there are linearly independent quadratic equations involving the S-box
input and output bits. To see why, just write S = A ◦ I, where A denotes the
GF(2)-affine mapping, and I maps zero to zero and equals the inversion over
GF(28) everywhere else. Then if w = S(u) = A ◦ I(u) and v = I(u), we get

uv = 1 , u2v = u , uv2 = v , uv4 = v3 , u4v = u3 ,

the first equation being true for all bits, except the least significant one, because
I(0) = 0. And since x 7→ x2 is GF(2)-linear, we deduce that the bits of u and v
are related by 5× 8− 1 = 39 quadratic equations. Now this property obviously
remains true after the application of A.

Going back to S, we are now able to write 4× 39 = 156 quadratic equations
relating rt

1 and rt+1
2 . Remember here that both registers are linear functions of

the LFSR initial state variables s0, . . . , s15 and r0
2, for any t > 0.

3.2 Recovering the Initial State and the Key

The problem of recovering the initial state of the LFSR can be directly translated
into that of solving the system of quadratic equations constructed in the previous
section. However, two distinct strategies can be devised.

First one may wish to entirely linearize the system. The number of monomi-
als involved are, in the worst case, all monomials of degree up to 2 involving a
total of 512+32 variables over GF(2). There are N =

∑2
k=0

(
544
k

)
such variables,

which is slightly more than 217. To be able to linearize the system, we thus need
to get about N/156 < 951 key stream words, that is we need to get less than
1000 consecutive output words of the stream cipher—under the usual assump-
tion that the small number of linear dependencies occurring before a full rank
system is obtained do not much affect the required number of outputs. A very
conservative estimation of the time complexity to solve the system is the cube
of the number of variables, that is about 251.

One could also want to solve the system of quadratic equations as soon as
it is overdefined and without requiring it to be linearized, since there exists
algorithms especially designed for this task [7, 10]. We note that in such case,
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only slightly more than 17 key stream output words are needed for the system
to be overdefined. In this case however, the complexity to solve the system is not
fully understood in the current state of the art, and is expected to be notably
higher than for solving a linearized system.

Once the initial state s0, . . . , s15, and r0
2 have been recovered using the above

linearization method, r0
1 is given by the relation r0

1 = r0
2 ⊕ s0 ⊕ s15 ⊕ z0, and

so the entire state of the cipher at clock t = 0 is known. In order to derive the
secret key K—and thus be able to predict the key stream sequence for other
IV s—it suffices to run the cipher backward, one clock in the normal operation
mode, then 32 clocks in the special feedback mode. It is easy to see that the state
transitions of the SNOW 2.0 in both normal and special modes are invertible.
Therefore, we are able to get the LFSR state at the initialization time, wich
gives, from the knowledge of IV , the value of the secret key K.

4 Implications for SNOW 2.0

In this section, we seek for an extension of our attack described in Sec. 3 to the
actual SNOW 2.0 stream cipher. We mainly identified two possible methods to
take into account the extra source of non-linearity introduced by the modular
additions of the FSM. The first one is to guess the carries’ values for a small
number of consecutive clocks. The other one consists in introducing new variables
for the carries, and building a system of quadratic equations involving the LFSR
initial state variables, the FSM initial memory variables and the extra carry
variables. As will be shown in the sequel, the first method appears to require an
impractical amount of guessing, while the second one seems more promising at
first glance from a cryptanalytic point of view.

In the following, the carry corresponding to the addition st+15�rt
1 of the FSM

will be denoted by ct
1, while the carry corresponding to the addition st+5 � rt

2 of
the FSM will be denoted by ct

2. Hence,

st+15 � rt
1 = st+15 ⊕ rt

1 ⊕ ct
1 ,

st+5 � rt
2 = st+5 ⊕ rt

2 ⊕ ct
2 .

(1)

As in previous section we denote by t = 0 the clock of the first observable output
of SNOW 2.0 and call initial state the state of the LFSR at t = 0.

4.1 Guessing the Carries

This method strives to take benefit of the specificities of the carry bits’ distri-
bution occurring in modular additions. According to Eq. 1, we can track affine
functions of r0

2, s0, . . . , s15 contained in the memory registers r1 and r2 in the
same way as done in Sec. 3—and then, apply the attack therein described—just
by guessing the values of the carries ct

1 and ct
2 for about 16 consecutive clocks.

The single difference with Sec. 3 is that the expressions of rt
1 and rt

2 now in-
volve constant terms from the guessed carry values. However, due to the very
particular distribution of carry bits, the cost of one guess is far less than 232.
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Actually, it can be shown that the most probable carry—i.e. with no carry at
all during the addition—has one chance over

(
3
4

)31 to occur. Indeed, this will
happen when any two matching bits are not simultaneously 1, which represents
three possibilities out of four. Thus a rough estimation for an upper bound on
the probability to make a right guess for the carries c1 and c2 during 16 consec-
utive clocks is

(
3
4

)31×2×16. As it is much less than 2−256, this approach seems
impractical.

4.2 Quadratic System with Carry Variables

This second method consists in building a system of quadratic equations describ-
ing the actual SNOW 2.0 stream cipher. To this end, it suggests to introduce
new GF(2) variables for the carry bits of the two modular additions ‘�’ at
each clock. This results in gathering quadratic equations during slightly more
than 17 clocks—for the system to be overdetermined—and trying to solve the
corresponding system.

Deriving the set of quadratic equations goes along the lines of the method
exposed in Sec. 3. Indeed, just inserting the carries due to modular additions
gives {

zt = ct
1 ⊕ st+15 ⊕ rt

1 ⊕ st ⊕ rt
2 ,

rt
1 = ct−1

2 ⊕ rt−1
2 ⊕ st+4 ,

which is this time reduced into

rt
2 = rt−1

2 ⊕ zt ⊕ st+15 ⊕ st+4 ⊕ st ⊕ ct
1 ⊕ ct−1

2 .

Eventually, we come to the fact that the memory registers can be expressed at
any clock t > 0 as a linear combination of the initial LFSR state variables, the
initial value r0

2 of the register r2, and all the carry bits occurring between clock 0
and clock t. The (i+1)th carry bit in the modular addition of two 32 bit words x
and y can be defined as the majority of the ith bits of x, y, and ith carry bit.
For each clock t, Eq. 1 thus implies

ct
1,[0] = 0

0 ≤ i < 32, ct
1,[i+1] = st+15

[i] rt
1,[i] ⊕ st+15

[i] ct
1,[i] ⊕ ct

1,[i]r
t
1,[i] ,

as well as

ct
2,[0] = 0

0 ≤ i < 32, ct
2,[i+1] = st+5

[i] rt
2,[i] ⊕ st+5

[i] ct
2,[i] ⊕ ct

2,[i]r
t
2,[i] ,

where x[i] denotes the ith bit of the 32 bit word x.
Of course, we have to add to these the quadratic equations holding between

the registers r1 and r2. As stated above in Sec. 3, there are 156 such equations
at each clock t, but this time involving the LFSR initial state variables, the
variables for the bits of r0

2, and all the carries’ bits.
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Let us now count the number of variables that appear in the system after
n consecutive clocks. There are the 512 variables from the LFSR initial state, the
32 variables from r0

2, plus for each clock, 62 carry bit variables. Hence, a total of
544 + 62n variables. On the other hand, there are 156n equations coming from
the relation S, and 62n equations from the definition of each carry bit, all at
most quadratic, which amounts to a total of 218n equations. Hence the minimum
value n = 17 for the system to be overdetermined, gives a total of 3706 equations
with 1598 variables. For larger value of n, the system is more overdefined, but
the equations to variables ratio is asymptotically bounded above by 7

2 .
The above system has been derived as to minimize the number of variables,

not to maximize its sparsity. One can easily see that only the equations defining
the carry bits are extremely sparse. Alternatively, one might write an equiva-
lent, still overdefined and much more sparse system, by introducing the aux-
iliary variables rt

1 and rt
2 and their related linear equations, at the expense of

increasing the number of variables. The system would have 544+126n variables,
282n quadratic or linear equations, and about the same sparsity as the equations
on the AES block cipher. Its intractability remains, as in the case of the AES,
an open question.

5 Conclusion

We exposed in this paper a very efficient attack against a close variant of
the stream cipher SNOW 2.0. Various ways to extend this attack to the ac-
tual SNOW 2.0 design were also tried. The key search problem for the actual
SNOW 2.0 was shown to be reducible to the solving of an overdetermined system
of quadratic equations, the complexity of which remains unknown nowadays.
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