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Abstract. Group signatures allow members to sign on behalf of a group. Recently, several schemes
have been proposed, in order to provide more efficient and shorter group signatures. However, this
should be performed achieving a strong security level. To this aim, a formal security model has been
proposed by Bellare, Shi and Zang, including both dynamic groups and concurrent join. Unfortunately,
very few schemes satisfy all the requirements, and namely the shortest ones needed to weaken the
anonymity notion.
We present an extremely short dynamic group signature scheme, with concurrent join, provably secure
in this model. It achieves stronger security notions than BBS, and namely the full anonymity, while
still shorter. The proofs hold under the q-SDH and the XDH assumptions, in the random oracle model.

1 Introduction

Group signature schemes (thereafter denoted GSS) have been introduced by Chaum and van
Heyst [12], in order to provide revocable anonymity to the signer, who is allowed to sign on behalf
of a group. In such a scheme, an authority is able, in exceptional cases, to “open” any group sig-
nature, and thus recover the actual signer. Properties of group signature schemes make them very
important cryptographic tools, with lots of applications (voting, bidding, anonymous attestation).

For many years, several GSS have been introduced, and namely the famous ACJT [1], which was
the first provably secure coalition-resistant scheme, under the Strong RSA and DDH assumptions.
More recently, Boneh, Boyen and Shacham (BBS) [6], and Camenisch and Lysyanskaya [11], pro-
posed very efficient group signature schemes using bilinear maps. The former provides very short
group signatures. Independently, Nguyen and Safavi-Naini (NS) [18] also proposed another group
signature scheme using bilinear maps. Note that all these schemes were analyzed in the random
oracle model [3].

Bellare, Micciancio and Warinschi (BMW) [2] gave formal definitions of the security properties
of group signatures, and proposed the first scheme provably secure in the standard model (while
totally unpractical). Independently, Kiayias and Yung [15] (and later [16]), also defined a security
model. Bellare, Shi and Zhang (BSZ) [4] extended the BMW model to the case of dynamic groups.
Unforgeability and anonymity are indeed crucial security notions, but they should be guaranteed
even if the adversary is allowed to play various attack games: adaptively open signatures, join any
user of his choice (dynamic group [4]), possibly concurrently (concurrent join [16]).

However, in several schemes, this model has been “weakened”, to obtain better efficiency, or to
fit with the actually achieved security notions, as done in BBS with CPA-full-anonymity, a weaker
version of anonymity where the adversary is not allowed to open signatures when trying to break
the anonymity notion. Very recently, Boyen and Waters [8] proposed the first efficient GSS that
is provably secure without random oracles, but with an important loss of efficiency. Indeed, the
length of group signatures grows according to the number of users, and the group public key too.

1.1 Motivations and Related Work

Recently, several schemes have been proposed, in order to reduce the computational cost and the
size of group signatures. In particular, BBS [6] is the most efficient one, and provides the shortest
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signatures so far. But they are still quite large if one compares to short classical signatures [7], and
very short group signatures would be of great interest too.

Furthermore, the security level provided by BBS signatures does not fit in the security models
proposed by Bellare et al. [2, 4]. Namely, anonymity is no longer formally guaranteed as soon
as one signature is open. However, such an opening process is expected to happen, hence the
importance of anonymity as defined in [2]: it must be guaranteed, even if the adversary can see/ask
for several openings. Moreover, non-frameability, as defined in BSZ is not guaranteed, because the
group manager is able to sign on behalf of any group member. However, the authors suggest a
possible way to fix this security problem, what we exploited, as explained below. In NS [18], the
(full) anonymity is guaranteed, but the computational cost and the size of the group signatures
are larger, compared to BBS. Furthermore, while NS claims to be in the BSZ security model, an
adaptive access to the join oracle is not properly dealt in the security proofs, and namely for the
traceability.

Adaptive, together with concurrent join is specifically considered by Kiayias and Yung [16]. It is
indeed a very attractive property since it allows for several users to register at the same time, which
could not be avoided (without a drastic efficiency reduction) in many applications (Internet-based
for example) However, their scheme provides quite long signatures, with quite high computational
cost.

A weakness in the BSZ model is the lack of revocation procedure. They gave some reasons for
that, however, revocation of group members is usually a major issue in practice, one has to deal
with for an actual scheme.

1.2 Contribution

In this paper, we deal with all the above problems together (therefore in the full BSZ security
model, and we even address revocation in the appendix). We thus present a new GSS, which
provides the strongest security level (under by now classical computational assumptions) in the
random oracle model, with quite practical features: concurrent join, very efficient signing and
verification procedures, and eXtremely Short (XS) signatures. The short size is also due to an
original application of the Forking Lemma [20], which is of independent interest.

Our signature scheme, named XSGS (eXtremely Short Group Signatures), provides anonymity
(which is a better security level than BBS [6], and most of the other schemes, except NS [18] and
KY [16]), with still very short signatures: 1444 bits, that is almost 70% shorter than a NS-Signature.
Furthermore, it is more efficient than NS [18], which provides the same security level (and even
better than BBS for verification.) Concurrent join and revocation are possible, which make our
schemes very attractive for dynamic groups.

2 Group Signature Schemes

According to the BSZ security model [4], group signature schemes involve distinct authorities,
with various rights, and should satisfy several security notions. Even if in many GSS, there is a
single authority, holding both Issuing and Opening capacities, it is preferable to separate those two
capabilities. One reason is the fact that for security proofs, we can consider one of the authority
corrupted, or partially corrupted, and the other not corrupted (we detail this point later).

2.1 Entities

A group signature scheme involves several entities: the group manager GM, which can add
new members to the group, by issuing new certificates (we could extend the model to include the
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revocation of certificates, but here we only consider the group manager as a certificate issuer. In the
appendix B we briefly deal with the revocation process); the opening manager OM, which can
revoke the anonymity of any group signature; users U ’s which are group members; and outsiders,
which do not belong to the group, but just have access to the group public key.

2.2 PKI environment

We assume that each user Ui, before joining the group, obtains a personal secret key usk[i], associ-
ated to a personal certified public key upk[i] (in a PKI). The group manager will also have a certified
pair of keys (gmpk, gmsk). This PKI environment is separated from the group environment, and
thus the certification authority will be assumed fully trusted (the only one). Indeed, this PKI will
provide the non-repudiation, but also the non-frameability property: even if the group authorities
are corrupted, they cannot frame a group member. Such a PKI can be formalized by a user-key
generation algorithm which generates a personal public and private key pair (upk[i], usk[i]) for a
user Ui.

2.3 Algorithms

In this section we recall the definitions regarding group signature algorithms, according to [4]:

– GKg– the key generation algorithm GKg generates, according to a security parameter, the group
manager’s secret key ik, the opening manager’s secret key ok, and the group public key gpk.

– Join– running the join or issue algorithm Join(Ui,GM), the group manager provides the member
Ui with his secret key gsk[i]. The group manager makes an entry reg[i] in the registration table
reg, with the entire transcript of the process (unless explicitly stated).

– GSig– the group signing algorithm GSig(gsk[i],m) generates a signature σ on a message m, in
the name of the group, using the user’s secret key gsk[i].

– GVf– the group signature verification algorithm GVf(gpk,m, σ): takes as input the group public
key, a group signature σ on message m. It decides whether the signature has been generated
by a member of the group (this is a deterministic algorithm).

– Open– the opening algorithm Open(ok,m, σ) revokes the anonymity of a signature, granted the
opening manager’s secret key. More precisely, with read-access to the registration table reg,
the opening manager is able to recover the identity of the actual signer (this is a deterministic
algorithm). The algorithm outputs an identity Ui, and a proof τ of this claim (which will be
used by the Judge algorithm).

– Judge– the judge algorithm takes as input the group public key gpk, the public key upk[i] of
the user Ui, a message m, a valid signature σ of m, and a proof τ . It is used to check that
Ui produced the signature σ on the message m. This algorithm does not require any private
information, and thus, the verification of the opening process is public.

2.4 Security Notions

The Oracles. In [4], the correctness and security definitions are formulated via experiments, which
involve oracle access to the adversary. We briefly describe the oracles provided to adversaries in the
security experiments.

– AddU(·) – add user oracle, which on input an identity Ui of a new user runs the Join algorithm.
This user Ui is added to the list HU of the Honest Users;

– CrptU(·, ·) – corrupt user oracle, which on input an identity Ui of a new user and a string upk
sets upk as the public key upk[i] of Ui. This user is added to the list CU of the Corrupted Users;
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– SndToI(·, ·) – send to issuer (group manager) oracle, which allows a corrupted user to run the
Join algorithm with the issuer;

– SndToU(·, ·) – send to user oracle, which allows a corrupted group manager to run the Join
algorithm with an honest user (which is important for the non-frameability);

– USK(·) – user secret key oracle, which converts an honest user (in HU) into a corrupted user
(in CU) by leaking the private keys upk[i] and gsk[i];

– RReg(·) – read registration table oracle, which gives a read access to the registration table reg;
– WReg(·, ·) – write registration table oracle, which gives a write access to the registration table

reg;
– GSig(·, ·) – signing oracle, which on input the identity i of an honest user and a message outputs

the signature the user would produce;
– Chb(·, ·, ·) – challenge oracle, which on input the identities Ui0 and Ui1 of two honest users and

a message m, outputs the signature the user Uib would produce on m. The message–signature
pair generated by this oracle is appended to the list Gset (initially set to empty);

– Open(·, ·) – opening oracle, which on input a message–signature pair, not generated by the
challenge oracle, and thus not in Gset, runs the Open algorithm to get the identity of the actual
signer.

Security Notions. We review, in appendix A, the formal experiments [4] which model the security
notions of a dynamic group signature scheme GSS:

Correctness. Signatures generated by a honest member should be accepted, and the open algorithm
should correctly identify the signer (and the judge should accept the proof returned by the opening
algorithm).

Anonymity. Given signatures produced by a user (among two of his choice – left-or-right) the
adversary should not be able to have a significant advantage in guessing which users (the left or
the right) provided the signatures. The adversary has a full and adaptive access to the Open oracle,
except on the signatures produced by the left-or-right signing oracle.

Traceability. It must be impossible to produce a valid signature such that either the honest opener
is unable to identify the signer, or the opener believes it has identified the origin but is unable to
produce a correct proof of its claim.

Non-frameability. Even the authorities (group manager and opener) are not able to wrongly accuse
someone for having signed a message. For this security level, we assume a colluding subset of users
and both authorities to be corrupted.

3 Preliminaries

Since our schemes use classical assumptions and notations, let us introduce them, and review the
most famous pairing-based group signature scheme, proposed by Boneh, Boyen, and Shacham [6].

3.1 Computational Assumptions

All the protocols below will apply in three isomorphic cyclic groups of prime order p: G1, G2 and
GT . We furthermore assume that there exists an admissible bilinear map e : G1×G2 → GT , which
can be evaluated efficiently. We denote by ψ the isomorphism from G2 onto G1, that we assume to
be one-way (easy to compute, but hard to invert).
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The Decisional Diffie-Hellman Problem (DDH).

Definition 1. Let us consider any group G of prime order p, the decisional Diffie-Hellman problem
is defined as follows: given a random generator G ∈ G, two random elements aG, bG in G, and a
candidate X ∈ G, one has to decide whether X = abG or not.

We denote by Advddh
G (A) the advantage of any adversary A in distinguishing the two distri-

butions: (G, aG, bG, abG) and (G, aG, bG, cG). As usual, we also denote by Advddh
G (t) the maximal

advantage that any adversary can get within time t.

In our context, because of the efficient bilinear map e : G1 × G2 → GT , and the isomorphism
ψ : G2 → G1, the DDH problem is easy in G2: given a tuple (G, aG, bG, cG) ∈ G4

2, one simply
checks whether e(ψ(aG), bG) = e(ψ(G), cG).

The eXternal Diffie-Hellman Assumption (XDH). Note that we furthermore assumed this
isomorphism to be one-way. This gives the chance for the following XDH assumption to be true.
Such an assumption has been introduced by Camenisch, Hohenberger and Lysyanskaya in the full
version of [9], and suggested in the full version of [6].

Definition 2. Given three groups G1, G2 and GT , as well as a bilinear map e : G1 × G2 → GT ,
while the DDH problem is easy in G2, the XDH assumption states that the DDH problem is hard
in G1.

Note that the above assumption does not only imply the one-wayness of ψ, but also that there is not
efficiently computable isomorphism from G1 onto G2. For supersingular curves, such an assumption
is known to be false [14], however, it is conjectured to hold, using the Weil or Tate pairing on MNT
curves (choosing curves with embedded degree > 1 and G1 to be the points defined over the ground
field. In this case, one can use the Trace map to go from G2 to G1). This is reason why it has
already been used in recent works [9], and the full version of [6].

The Strong Diffie-Hellman Assumption (SDH). A new assumption, similar to the Strong-
RSA one, has been recently introduced by Boneh and Boyen [5]: the Strong Diffie-Hellman As-
sumption.

Definition 3. Let us be given two isomorphic groups G1 and G2 (together with the isomorphism
ψ : G2 → G1.) The q-Strong Diffie-Hellman problem consists, on input a (q+2)-tuple (G1, G2, γG2,
γ2G2,. . .,γqG2), for a random element γ ∈ Zp and a random generator G2 of G2, and G1 = ψ(G2),

in outputting a pair
(
x, 1

γ+xG1

)
, with x ∈ Z?

p.

We denote by Succsdh
(G1,G2)(q,A) the success of any adversary A in outputting such a solution on a

random input instance. We also denote by Succsdh
(G1,G2)(q, t) the maximal success that any adversary

can get within time t.

Definition 4. The q-SDH assumption states that this problem is intractable for a given q.

3.2 Common Parameters

One chooses a random generator G2 in G2, and we denote by G1 its transformation by ψ: therefore,
G1 = ψ(G2) is a generator of G1. We also need additional, and independent generators G, H and
K in G1, whose relative discrete logarithms as well as discrete logarithms in basis G1 are unknown
(unless something else is made more precise). We will denote by W = γG2 the public key of the
group (with all the above public informations: the groups and the generators). The value γ ∈ Zp is
kept secret by the group manager. It will be used to issue membership certificates.
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3.3 BBS: Short Group Signatures

The idea of the BBS group signature [6] consists in providing a signature of knowledge of a solution
to the SDH problem: (A, x) such that (x+ γ)A = G1. The latter is generated granted the help of
the group manager who knows γ. However, in order to allow the anonymity revocation (the opening
operation by the group manager), the proof must not be totally zero-knowledge but partially only:
the group manager should be able to recover A.

Therefore, in order to sign a message m, the user first encrypts A with the encryption key of
the group manager; he then provides a zero-knowledge proof that the plaintext actually contains
an A for which he knows the corresponding x. The security analysis didnot follow the above BSZ
model [4], because of some restrictions:

– the unforgeability of the certificates directly comes from the q-SDH assumption. However,
the proposed format of the membership certificate does not make any value private to the
group manager. Therefore, he can sign on behalf of any user: the non-frameability cannot be
guaranteed.

– with a semantically secure encryption scheme, anonymity is guaranteed. However, since one
works in groups subject to efficiently computable bilinear maps, the DDH problem may not
be hard. Therefore, they prefer to use a new encryption scheme (linear encryption) instead
of the classical ElGamal encryption (the ciphertext is larger: 3 group elements, instead of
2). Furthermore, it is semantically secure against chosen-plaintext attacks only: the semantic
security (and even the one-wayness) can be broken if the adversary has access to the decryption
oracle: the above definition of anonymity does not hold if the adversary has access to the
Open-oracle. This is the reason why they defined a weaker notion of anonymity, the so-called
CPA-full-anonymity, or weak anonymity.

On the other hand, the main goal was a short signature, which indeed consists of three elements
of G1 (the encryption) and six elements of Zp (the proof of knowledge). Hence, the size is just 1533
bits.

3.4 Improvements

In order to improve the security (anonymity and non-frameability), it seems natural that we have
to enhance the scheme, and thus to degrade the size:

– make the encryption scheme IND-CCA2 [21], by adding a proof to ensure security against
chosen-ciphertext attacks;

– involve an extra parameter in the membership certificate, known to the user only.

Actually, it is possible to make these security improvements without loosing anything from the
efficiency point of view (and even improving it too), making the XDH assumption.

4 XS Group Signatures

Note that for simplicity, we will use “certificate” to designate (Ai, gsk[i]) in general, and just Ai at
some specific time. In our scheme, we exploit and study two suggestions from [6], also used in [18],
together with new tricks:

– First, we make the assumption that the DDH holds in the group G1, which is true under
the XDH assumption. This will then allow a compact IND-CCA2 ElGamal-based encryption
scheme;
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– Then, we enhance the membership certificate with an additional secret y, known to the user
only: (A, x, y), with A ∈ G1, x, y ∈ Zp, such that (x + γ)A = G1 + yH. Applying e(·, G2)
on both sides, one gets that a triple (A, x, y) is a valid certificate if and only it satisfies the
relation:

e(A,G2)x · e(A,W ) · e(H,G2)−y = e(G1, G2).

– Finally, we revisit the forking lemma [20] in order to even shorten the signatures.

4.1 Concurrent Join Protocol and Revocation

In order to guarantee the non-frameability, one needs a specific Join procedure which provides a
group member with a certificate such that the group manager does not know the private key. During
the Join protocol, a future group member interacts with the group manager, in order to obtain a
valid group certificate (A, x, y), with a private y. This Join protocol is presented on figure 1, where

U (upk, usk) GM (γ, gmsk)

y
R← Zp, C ← yH

U ←
„

c = Ext-Commit(y),
NIZKPEqDL(c, C, H)

«
C,U−−−−−−−−−−→ Verifies C ∈ G1, checks U

x
R← Zp, A← ( 1

γ+x
)(G1 + C)

B ← e(G1 + C, G2)/e(A, W )
D ← e(A, G2)

A,V←−−−−−−−−−− V ← NIZKPoKDL(B, D)
B ← e(G1 + C, G2)/e(A, W )
D ← e(A, G2)
Verifies A ∈ G1, checks V

S ← Signusk(A)
S−−−−−−−−−−→ Checks S w.r.t. upk and A

Checks that (x + γ)A
?
= G1 + yH

x←−−−−−−−−−− adds (upk, A, x, S)
i.e. e(A, G2)

x · e(A, W ) · e(H, G2)
−y = e(G1, G2)

Fig. 1. Join Protocol

– Ext-Commit is an extractable commitment, that is a commitment which is perfectly binding,
and computationally hidding, and a trapdoor allows to open it. Actually, the trapdoor will
not be known to anybody, except to our simulator in the security proofs of the traceability
and non-frameability. A good example, well-suited to our situation, is the Paillier’s encryption
scheme [19]: as any encryption scheme, injectivity implies the unconditional binding property,
while the computational hiding relies on the semantic security, the high-residuosity assumption.
The decryption key allows the extraction;

– NIZKPEqDL(c, C,H) denotes a zero-knowledge proof of equality of the discrete logarithm of
C in basis H with the committed value in c, non-interactive in the random oracle model. We
won’t detail such a proof, but it can be efficiently done with the Paillier’s encryption scheme,
since it is an equality of discrete logarithms (in different groups). Note that such a proof of
membership together with an extractable commitment becomes a proof of knowledge: the user
necessarily built C knowing y.

– NIZKPoKDL(B,D) denotes a zero-knowledge proof of knowledge of the discrete logarithm of
B in basis D, non-interactive in the random oracle model.
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Let us explain the steps in this protocol: This protocol is concurrently secure since all the proofs
are non-interactive (NIZKPEqDL, NIZKPoKDL, and the signature), and everything is defined in the
first move (the 2 first flows), while the second move (the 2 last flows) involves a signature before
revealing the certificate to the user. It ensures the non-frameability property. Indeed, the signature
Signusk(A) ensures that U owns the certificate A, in a non-repudiable way. But such a signature is
provided by U only after having checked V : GM actually knows x, and thus used the C chosen by
U . Therefore, he cannot know the associated y.

The revocation, which allows the group manager to remove a member from the group, works
almost exactly as in [6] (inspired by [10]). We describe it in more details in appendix B.

4.2 XSGS: an eXtremely Short Group Signature Scheme

Since we make the XDH assumption, it is reasonable to apply a classical ElGamal encryption, to
hide the certificate, in a revocable way. In order to reach the (full) anonymity property, we enhance
the encryption scheme with the IND-CCA2 security, using the Naor-Yung methodology [17], but in
the random-oracle model [13]. In order not to increase too much the size of the signature, the above
H (involved in the certificate) will be used as one of the opening manager’s public keys. Actually,
the secret key of the opening manager is the pair (ξ1, ξ2) such that H = ξ1K and G = ξ2K.

Parameters. We thus have:

– group public key: gpk = (G1,G2,GT , e, ψ; G1,K,H = ξ1K,G = ξ2K; G2,W = γG2);
– group manager’s secret key: ik = γ, which helps to generate the certificate triples (A, x, y), with
A ∈ G1, x, y ∈ Zp, such that (x+ γ)A = G1 + yH;

– opening manager’s secret key: ok = (ξ1, ξ2), which will help to decrypt ElGamal ciphertexts;
– an extractable commitment scheme. In the case of the Paillier’s encryption scheme [19], one

has to choose an RSA modulus n, and an element g of maximal order in Z?
n2 , without know-

ing/keeping the factorization.

Double ElGamal Encryption. The signer who owns a certificate (A, x, y), randomly chooses
α, β ∈ Zp and computes: T1 = αK T2 = A+ αH T3 = βK T4 = A+ βG.

First, in order to make the encryption scheme resistant to chosen-ciphertext attacks, one has to
prove that (T1, T2) and (T3, T4), which are two ciphertexts with independent keys and independent
random coins, encrypt the same plaintext: there exist α and β such that

T1 = αK T3 = βK T2 − T4 = αH − βG.

Secondly, as before, (T1, T2) is the encryption of a valid certificate (A, x, y) if and only if there
exists an α such that (with z = xα+ y)

T1 = αK and e(T2, G2)x · e(H,W )−α · e(H,G2)−z = e(G1, G2)/e(T2,W ).

Signature. The signer has thus to prove the knowledge of (α, β, x, z) which satisfies the 4 above
relations. Such a proof of knowledge clearly shows that, both there exist convenient α and β values,
and the prover knows a certificate. It can be performed with classical techniques, and the non-
interactive version uses the Fiat-Shamir paradigm, in the random-oracle model: in order to sign m,
U randomly chooses 4 elements rα, rβ , rx and rz in Zp and computes

– R1 = rαK R2 = e(T2, G2)rx · e(H,W )−rα · e(H,G2)−rz

R3 = rβK R4 = rαH − rβG.
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– c = H(m,T1, T2, T3, T4, R1, R2, R3, R4), where H outputs k-bit long elements;
– sα = rα + cα mod p sβ = rβ + cβ mod p
sx = rx + cx mod p sz = rz + cz mod p.

A signature therefore consists of the tuple (T1, T2, T3, T4, c, sα, sβ , sx, sz), and the verifier finally
checks whether the following relations are satisfied or not:

sαK = R1 + cT1 sβK = R3 + cT3 sαH − sβG = R4 + c(T2 − T4)
e(T2, G2)sx · e(H,W )−sα · e(H,G2)−sz = R2 · (e(G1, G2)/e(T2,W ))c

Open. To open a signature, OM uses the decryption key ok to recover A (and provides a publicly-
verifiable proof τ that he did it well —which is a simple proof of equality of discrete logarithms in
G1)—, and then the actual signer, using his read-access to the registration table reg (to prove, in
τ , that the designated user Ui has not be framed, OM uses S = Signusk[i](A)).

4.3 Properties

Such a signature contains 4 elements from G1 (over 171 bits) and 4 scalars (modulo p) of 170 bits.
The challenge can just be on 80 bits: the signature can thus be encoded on 1444 bits (less than 181
bytes). From the effiency point of view:

– for the signature, one can compute

R2 = e(A,G2)rx · e(H,W )−rα · e(H,G2)αrx−rz .

Since all the pairing values can be precomputed, the signature globally requires 7 multi-
exponentiations in G1 and 1 multi-exponentiation in GT .

– to verify a signature one has to compute

R2 = e(T2, sxG2 + cW )·e(H,W )−sα ·e(H,G2)−sz ·e(G1, G2)−c.

Most of the pairing values can be precomputed: the verification requires 3 multi-exponentiations
in G1, 1 multi-exponentiation in G2, 1 pairing computation and 1 multi-exponentiation in GT .

4.4 Without the XDH Assumption.

One should note that the XDH assumption helps to get the very short signature, but is not crucial
for our construction: if the XDH assumption does not hold, one can use a double variant of the
Linear Encryption (the Linear Encryption has been introduced in [6], and is secure assuming the
Decision Linear Diffie-Hellman Assumption). Thus we can obtain group signatures of 2126 bits (6
elements from G1, 6 scalars (modulo p) of 170 bits, and the challenge).

4.5 Security Analysis of XSGS

In order to prove the correctness of the group signature scheme, we first need to show that the
interactive proof of knowledge is complete, then, the correctness of the Open algorithm immediately
leads to the result. Actually, in order to prove the traceability, we furthermore need to show
that the interactive proof of knowledge is an honest-verifier zero-knowledge and sound proof of
knowledge. Thereafter, a simple application of the forking lemma 7 leads to the expected result.
This means that we first need the following lemma, which proof can be found in appendix C.
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Lemma 5 (Honest-Verifier Zero-Knowledge Proof of Knowledge). The interactive proof
is a honest-verifier zero-knowledge proof of knowledge.

From the correctness of the proof of knowledge and the use of a correct encryption scheme, one
gets the correctness of the group signature scheme:

Theorem 6 (Correctness). The group signature scheme XSGS is correct.

If one gets a closer look at the proof of the forking lemma [20], with a random oracle H which
outputs k-bit elements, one can claim the following lemma:

Lemma 7 (Forking Lemma). Let A be a probabilistic polynomial time Turing machine whose
input only consists of public data and which can ask qH queries to the random oracle, with qH > 0.
We assume that, within the time bound T , A produces a valid signature (m,σ1, h, σ2), with proba-
bility ε ≥ 1/2k + η for some η > 240qH/2k. Then, within time T ′ ≤ 9qHT/ε, and with probability
ε′ ≥ 1

6 , a replay of this machine outputs two valid signatures (m,σ1, h, σ2) and (m,σ1, h
′, σ′2) such

that h 6= h′.

Proof. First, with probability greater than η, A outputs a signature (m,σ1, h, σ2) that is valid, such
that h has been obtained as an H answer on (m,σ1). Therefore, if we run the attacker 2/η times
with different random tapes, we get a success with probability greater than 1− e−2 ≥ 6

7 , such that
the query H(m,σ1) has been asked, and answered by h: the crucial query.

By applying the Splitting-Lemma [20], we know that with probability of 1/4, for each replay,
we have a new success with probability greater than η/4qH : we thus replay the attack 8qH/η times
with a new random oracle (but the same answers until the crucial query). With probability greater
than 6

7 , we get another success. The challenge is different from the previous one with probability
8qH/η2k.

Finally, after less than 2(1 + 4qH)/η replays of the attack, with probability greater 1/5 −
8qH/η2k, which is greater than 1/6 as soon as η ≥ 240qH/2k, we get two valid signatures (m,σ1, h, σ2)
and (m′, σ′1, h

′, σ′2) with h′ 6= h. ut

The following lemma shows that the signature is unforgeable without the knowledge of a cer-
tificate, even if the hash function outputs 80-bit values:

Lemma 8 (Unforgeability). It is computationally impossible to produce a valid signature, with-
out the knowledge of a membership certificate, even under chosen-message attacks, in the random
oracle model: if there exists an adversary A able to build a valid signature within time t, with proba-
bility ε ≤ 1/2k +η+ qS(qH + qS)/p4, for some η > 240qH/2k, after qH queries to the random oracle
H and qS queries to the signing oracle, then one can build a membership certificate in expecting
time O(qHt/η).

Proof. We remind the signature consists of ((m,T1, T2, T3, T4), c, (sα, sβ , sx, sz)), which is not ex-
actly the framework used in the above Forking Lemma. Anyway, with a few extra computation (but
no new hash-query), one can make such a signature of the more classical form ((m,T1, T2, T3, T4),
(R1, R2, R3, R4), c, (sα, sβ, sx, sz)), where c = H(m,T1, T2, T3, T4, R1, R2, R3, R4).

Furthermore, one can efficiently simulate the signing algorithm, in the name of any user (with
a statistically negligible probability of failure when setting a random oracle value: less than (qH +
qS)/p4 for each signature simulation.) If the adversary succeeds with probability ε ≤ 1/2k + η +
qS(qH + qS)/p4, then including the signature simulation, we build a no-message adversary that
makes a forgery with probability greater than 1/2k +η. According to the above forking lemma, one
can extract two related signatures, with the same hash-query but different challenges

(m,T1, T2, T3, T4), (R1, R2, R3, R4), c, (sα, sβ, sx, sz) c′, (s′α, s
′
β, s

′
x, s

′
z)
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in expected time O(qHt/η). Thereafter, simply applying the same technique as the one used to
prove the soundness, one gets a valid certificate (A, x, y). ut

Theorem 9 (Traceability). The group signature scheme XSGS is traceable.

Proof. Suppose there is an adversary A that wins with probability ε the traceability game against
our scheme. We describe an algorithm B that can break the SDH problem, with the help of the
adversary A. Let {(Ai, xi, yi)}qi=1, with q = q1 + q2 be the set of certificates generated during the
whole attack. More precisely, {(Ai, xi, yi)}q1

i=1 is any set of certificates corresponding to honest users,
who can be (all) corrupted by the adversary during the attack (using USK oracle). Furthermore, the
adversary is allowed to add new (and possibly corrupted) members, which certificates are denoted
{(Ai, xi, yi)}q2

i=q1+1.
If the adversary can generate a signature which opens to a new A? (not associated to an existing

user), using the “unforgeability” technique (see lemma 8), one can find a new certificate (A?, x?, y?)
in reasonable expected time. From the success of the adversary in the attack game, we know that
A? does not belong to {Ai}qi=1. Let B be given a q-SDH instance (G,G′, ΘG′, . . . , ΘqG′). It

– randomly chooses α R← Zp and xi
R← Zp, for i = 1, . . . , q, such that the xi’s are pairwise distinct

– randomly chooses yi
R← Zp, for i, . . . , q1, and k R← {1, ..., q1}

(lets us formally define γ ← Θ − xk, which is unknown)
– computes from the challenge q-SDH instance (since all the formula involve polynomials in Θ

of degree at most q times G′ or G, and G = ψ(G′)),

G2 ← α [
∏q

i=1(Θ + xi − xk)]G′ − yk

[∏q
i=1
i6=k

(Θ + xi − xk)
]
G′; G1 ← ψ(G2)

H ←
[∏q

i=1
i6=k

(Θ + xi − xk)
]
G; W ← γG2

– randomly generates ok and compute the corresponding encryption keys
– generates the extractable commitment, but knowing the trapdoor,
– simulates the first set of users {(Ai, xi, yi)}q1

i=1, computing Ai = 1
xi+γ (G1 +yiH) according to i:

• if i = k, Ak =
1

xk + γ
(αΘH)← α

 q∏
i=1,i6=k

(Θ + xi − xk)

G
• if i 6= k, since

yi = (yi − yk) + yk and (yi − yk)H = (yi − yk)

 q∏
j=1,i6=k

(Θ + xi − xk)

G,

Ai ← (yi − yk)

 q∏
j=1,j 6=i,k

(Θ + xj − xk)

G+ α

 q∏
j=1,j 6=i

(Θ + xj − xk)

G.
– simulates oracles that A needs to access (AddU, Open, GSig...). To simulate the Join protocol

(engaged with A via the SndToI-oracle to add a (corrupted) user Ui with i ∈ {q1 + 1, . . . , q2}),
B uses the trapdoor to extract the value yi committed by the adversary at the beginning of
the join, and computes Ai as described before: i 6= k, and all the xi have been chosen ahead)
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Finally, the certificate satisfies

A? =
1

x? + γ
(G1 + y?H) =

1
x? +Θ − xk

(αΘ + y? − yk)

 q∏
i=1,i6=k

(Θ + xi − xk)

G.
Since A? /∈ {Ai}qi=1, and namely A? 6= Ak, y? − yk 6= α(x? − xk). When we extract A? /∈ {Ai}qi=1

(in reasonable expected time), two cases may happen:

1. x? ∈ {x1, . . . , xq} with probability greater than 1/2. Since no information leaks about k, x? = xj

with j 6= k with probability greater than (q1 − 1)/2q, and then

1
yj − y?

(yjA
? − y?Aj) =

1
xj +Θ − xk

G,

and B has obtained ( 1
x+ΘG, x), solution to the q-SDH problem (with x = xj − xk).

2. x? 6∈ {x1, . . . , xq} with probability greater than 1/2. By an Euclidean division, one can express
A? = (C/(Θ + x? − xk) + P (Θ))G, with

C = (α(xk − x?) + y? − yk)

 q∏
i=1,i6=k

(xi − x?)

 6= 0

and P a polynomial of degree q − 1. And thus, B can compute C and P (Θ)G from the initial
instance, and therefore ( 1

x+ΘG, x), a solution to the q-SDH problem (with x = x? − xk).
ut

The anonymity property (not only CPA-full-anonymity [6]) is achieved granted the Double El-
Gamal encryption scheme, which is IND-CCA [13].

Theorem 10 (Anonymity). Under the XDH assumption, the group signature scheme XSGS is
anonymous: if there exists an adversary A able to break the anonymity game, with advantage ε,
and within time t (in the random oracle model), after qH queries to the random oracle H and
qS queries to the challenge oracle, then one can break the DDH problem in G1 with advantage
ε/4 − (qH + qS)/p4, within time t′ ≤ t + 4qSTpairing + (2 + 8qS)Texp, where Tpairing is the time of a
pairing computation, and Texp is the time of a (multi)-exponentiation.

Proof. We are given a quadruple (K,T, U = uK, V = vT ) in G1 such that either u = v (DDH
quadruple) or v is random (random quadruple). From such a tuple, using the classical random
self-reducibility, one can derive many independent tuples: (K,T, Ui = uiU + viK,Vi = uiV + viK).
We will choose the group manager’s secret key γ, and compute W = γG2. Then, we flip a coin
d, and define, either H = ξ1K and G = T (if d = 0), or H = T and G = ξ2K (if d = 1), to
set the group public key as (G1,G2,GT , e, ψ;G1,K,H,G;G2,W = γG2). Actually, we only know
half of the opening manager’s key. We will show it is enough to simulate the decryption process
(while still allowing to extract something from the adversary). All the other queries can be perfectly
answered since using γ, we can build certificates (Join-queries), and thus answer GSig-queries too.
Hash-queries can be simulated as usual with a new random value in {0, 1}k for any new query.
For the challenge queries, the simulator B chooses two independent random bits b and d′, and will
try to simulate the signature from Ab: the i-th request is answered, given a message m, and two
certificates (A0, x0, y0) and (A1, x1, y1)

– the encryption: according to d, by choosing an additional random bit d′:
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• if d = 0, T1 ← αK, T2 ← Ad′ + αH, T3 ← Ui and T4 ← Ab + Vi, for a random α;
• if d = 1, T1 ← Ui, T2 ← Ab + Vi, T3 ← βK and T4 ← Ad′ + βG, for a random β.

– the proof of validity can be simulated (see the simulator for the zero-knowledge property in
appendix C). The latter may fail only with a negligible probability when setting the random
oracle value, but less than (qH + qS)/p4.

In case of failure, B exits, otherwise, (T1, T2, T3, T4, c, sα, sβ , sx, sz) is the signature of m given back
to A. Eventually, the latter returns its guess b′ for b. Our algorithm B answers β = (b′ = b) as its
guess about the tuple (K,T, U, V ).

If this is a DDH tuple, and d′ = b, the 2 ElGamal encryptions always encrypt Ab, this is a
valid signature (the advantage of A in guessing b is ε.) However, if d′ 6= b, both certificates are
encrypted,A has thus no advantage in guessing b (we will indeed show below that decryption queries
do not reveal any information about d.) If this is a random tuple, the signature is independent of
b, thus the adversary’s advantage is 0. As a consequence, our algorithm B has an advantage ε/4 in
distinguishing DDH quadruples (in a group subject to bilinear maps, hence breaking XDH.)

Now, since we know half of the opening manager’s key, as soon as a signature is valid (with
identical plaintexts), the decryption of half of the ciphertext is enough. The soundness of the proof
of validity (see in appendix C) showed that incorrect proofs are very unlikely. ut

The final property is the non-frameability, which is important for honest users: it guarantees
that neither the group manager or the opening manager can cheat, and frame him.

Theorem 11 (Non-Frameability). The group signature scheme XSGS is non-frameable.

Proof. First, it is clear, from the Open protocol is publicly verifiable, that a wrong open procedure
is statistically negligible (even for a powerful adversary).

Second, suppose there is an adversary A that breaks the non-frameability of our scheme. We de-
scribe an algorithm B that can break the DL problem. Let {(Ai, xi, yi)}q+q′

i=1 be the set of certificates
generated during the attack. γ and all the (Ai, xi) are given to the adversary (so the adversary
has access to all yiH), but only {yi}qi=1, for the insider colluders. If the adversary can generate
a signature which opens to a A? ∈ {Ai}q+q′

i=q+1 (outside the collusion), using the “unforgeability”
technique (replay attack and soundness), one can find the whole certificate (A?, x?, y?), and two
cases may happen:

Case 1: A? ∈ {Ai}q+q′

i=q+1 and (A?, x?) /∈ {(Ai, xi)}q+q′

i=q+1 more than half of the time. We show that
given a discrete logarithm instance (G,G′) in G2, B can compute Θ = logGG

′. In this case, B
computes the group public key: (G1,G2,GT , e, ψ;G1 = ψ(G),K = ξH,H = ψ(G′);G2 = G,W =
γG) with (γ, ξ) R← Z?

p
2, randomly chosen by B. It can furthermore simulate any kind of join

procedure using γ. We then have H = ΘG1. Since A? = Aj ∈ {Ai}q+q′

i=q+1 (with x? 6= xj , and thus
y? 6= yj), we have

A? =
1

x? + γ
(G1 + y?H) = v

1
x? + γ

(G1 + y?ΘG1)

=
1

xj + γ
(G1 + yjH) =

1
xj + γ

(G1 + yjΘG1).

Therefore, (xj + γ)(1 + y?Θ) = (x? + γ)(1 + yjΘ) and y? 6= yj , which easily leads to Θ.



14

Case 2: (A?, x?) ∈ {(Ai, xi)}q+q′

i=q+1 more than half of the time. We show that given a discrete
logarithm instance (G,G′) in G1, B can compute Θ = logGG

′. In this case, B computes the
group public key: (G1,G2,GT , e, ψ;G2

R← G1,K = ξH,H = G;G1 = ψ(G2),W = γG) with
(γ, ξ) R← Z?

p
2, randomly chosen by B. It can simulate any join procedure as above, with γ, but also

chooses a random j ∈ {q + 1, ..., q + q′}, for which honest user it makes Aj = 1
xj+γ (G1 +G′). Since

(A?, x?) ∈ {(Ai, xi)}q+q′

i=q+1, we have (A?, x?) = (Aj , xj) whith probability 1/q′, and thus:

A? =
1

x? + γ
(G1 + y?G) = Aj =

1
xj + γ

(G1 +G′)

=
1

xj + γ
(G1 +ΘG) =

1
x? + γ

(G1 +ΘG)

which easily leads to Θ (Θ = y?.) ut
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A Security Notions: Experiments

A.1 Correctness

To any adversary A and any k ∈ N we associate the experiment Expcorr
(GSS,A)(k) (see figure 2), and

Experiment Expcorr
(GSS,A)(k)

(gpk, ik, ok)
R← GKg(1k);CU← ∅;HU ← ∅;(i, m)

R← A(gpk : AddU(.), RReg(.))
If i /∈ HU then return 0; If gsk[i] = ε then return 0
σ ← GSig(gpk, gsk[i], m); If GVf(gpk, m, σ) = 0 then return 1
(j, τ)← Open(gpk, ok, reg, m, σ); If i 6= j then return 1
If Judge(gpk, i, upk[i], m, σ) = 0 then return 1 else return 0

Fig. 2. Correctness Experiment

define
Advcorr

(GSS,A)(k) = Pr[Expcorr
(GSS,A)(k) = 1].

A dynamic group signature scheme GSS is correct if Advcorr
(GSS,A)(k) = 0 for any adversary A and

any k ∈ N (A is not computationally restricted).

A.2 Anonymity

To any adversary A, a bit b ∈ {0, 1} (which defines the Chb-oracle) and any k ∈ N we associate the
experiment Expanon−b

(GSS,A)(k) (see figure 3), and define

Experiment Expanon−b
(GSS,A)(k) // b ∈ {0, 1}

(gpk, ik, ok)
R← GKg(1k);CU ← ∅; HU← ∅; Gset← ∅

d
R← A(gpk, ik : Chb(·, ·, ·, ·), Open(·, ·), SndToU(·, ·), WReg(·, ·), usk(·), CrptU(·, ·))

return d

Fig. 3. Anonymity Experiment

Advanon
(GSS,A)(k) = Pr[Expanon−1

(GSS,A)(k) = 1]− Pr[Expanon−0
(GSS,A)(k) = 1].

A dynamic group signature scheme GSS is anonymous if the function Advanon
(GSS,A)(·) is negligible

for any polynomial-time adversary A.
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A.3 Traceability

To any adversary A and any k ∈ N we associate the experiment Exptrace
(GSS,A)(k) (see figure 4), and

Experiment Exptrace
(GSS,A)(k)

(gpk, ik, ok)
R← GKg(1k);CU← ∅; HU← ∅

(m, σ)
R← A(gpk, ok : SndToI(·, ·), AddU(·, ·), RReg(·, ·), usk(·), CrptU(·, ·))

If GVf(gpk, m, σ) = 0 then return 0; (i, τ)← Open(gpk, ok, reg, m, σ)
If i = 0 or Judge(gpk, i, upk[i], m, σ, τ) = 0 then return 1; else return 0

Fig. 4. Traceability Experiment

define
Advtrace

(GSS,A)(k) = Pr[Exptrace
(GSS,A)(k) = 1].

A dynamic group signature scheme GSS is traceable if the function Advtrace
(GSS,A)(·) is negligible for

any polynomial-time adversary A.

A.4 Non-frameability

To any adversary A and any k ∈ N we associate the experiment Expnf
(GSS,A)(k) (see figure 5), and

Experiment Expnf
(GSS,A)(k)

(gpk, ik, ok)
R← GKg(1k);CU← ∅; HU← ∅

(m, σ, i, τ)
R← A(gpk, ok, ik : SndToU(·, ·), WReg(·, ·), GSig(·, ·), usk(·), CrptU(·, ·))

If GVf(gpk, m, σ) = 0 then return 0
If the following are all true then return 1 else return 0:
- i ∈ HU and gsk[i] 6= ε and Judge(gpk, i, upk[i], m, σ, τ) = 1
- A did not query usk(i) or GSig(i, m)

Fig. 5. Non Frameability Experiment

define
Advnf

(GSS,A)(k) = Pr[Expnf
(GSS,A)(k) = 1].

A dynamic group signature scheme GSS is non-frameable if the function Advnf
(GSS,A)(·) is negligible

for any polynomial-time adversary A.

B Revocation

Formula in [6] can be extended to certificates of the form (A, x, y): for a revocated user Ui, The
group manager publishes (B?

i , xi,H
?
i ,K

?
i ), with

B?
i = 1

γ+xi
G2 H?

i = 1
γ+xi

H K?
i = 1

γ+xi
K.

The new public key can be constructed (by anyone) as follows:

G̃1 = ψ(B?
i ) G̃2 = B?

i W̃ = G2 − xiB
?
i H̃ = H?

i K̃ = K?
i
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One can note that logK H = logK̃ H̃. Then unrevoked users can update their certificates: let U be
an unrevoked user, whose certificate is (A, x, y). We describe below how U updates his certificate,
after the revocation of Ui (and thus from the above public information): U computes:

Ã = 1
x−xi

(ψ(B?
i ) + yH?

i )− 1
x−xi

A.

One can verify that (Ã, x, y) is a valid certificate for the new group public key:

(γ + x)Ã =
γ + x

x− xi
(ψ(B?

i ) + yH?
i )− γ + x

x− xi
A

=
γ + x

x− xi
(ψ(B?

i ) + yH?
i )− 1

x− xi
(G1 + yH)

=
γ + x

x− xi
(ψ(B?

i ) + yH?
i )− 1

x− xi
((γ + xi)ψ(B?

i ) + (γ + xi)yH?
i )

= ψ(B?
i ) + yH?

i = G̃1 + yH̃.

The group manager can also update (keeping track of all the modifications for the verification of
the signature) the users’ database: from (upk, A, x, yH, S), it can compute the new values (note
that y is not needed, but yH only.) ut

C Honest-Verifier Zero-Knowledge Proof of Knowledge – Proof of Lemma 5

Such a proof of knowledge must satisfy the following properties:

C.1 Completeness.

An honest prover, who owns a valid triple (A, x, y), will be accepted: Let

gpk = (G1,G2,GT , e, ψ;G1,K,H = ξ1K,G = ξ2K;G2,W = γG2)

be the common group public key, and U an honest prover, whose triple is (A, x, y). From the
generation of all the elements, one can easily check the completeness.

C.2 Soundness.

Let us assume that an algorithm A succeeds with non-negligible probability: after having sent the
commitments (T1, T2, T3, T4, R1, R2, R3, R4), its success probability is non-negligible. Therefore, it
can answer correctly, with non-negligible probability, to the two challenges c and c′, by (sα, sβ, sx, sz)
and (s′α, s

′
β, s

′
x, s

′
z) respectively. Let us denote by c′′ the difference between c and c′ (which is non-

zero modulo p, since 0 ≤ c 6= c′ < 2k < p: We also denote by s′′α, s′′β, s′′x and s′′z the relative differences
of the answers:

s′′αK = c′′T1 s′′βK = c′′T3 s′′αH − s′′βG = c′′(T2 − T4)

(T2, G2)s′′x · e(H,W )−s′′α · e(H,G2)−s′′z = (e(G1, G2)/e(T2,W ))c′′

If we define
x̃ = s′′x/c

′′ z̃ = s′′y/c
′′ α̃ = s′′α/c

′′ β̃ = s′′β/c
′′,

we have
T1 = α̃K T3 = β̃K T2 − T4 = α̃H − β̃G
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and
e(T2, G2)x̃ · e(H,W )−α̃ · e(H,G2)−z̃ = e(G1, G2)/e(T2,W ).

Therefore, with Ã = T2 − α̃H and ỹ = z̃ − α̃x̃, one gets

e(Ã,G2)x̃ · e(Ã,W ) = e(G1, G2) · e(H,G2)ỹ

which means that (Ã, x̃, ỹ) is a valid certificate: (x̃+γ)Ã = G1 + ỹH. Indeed, e is non-degenerated,
and thus e(·, G2) is an injection.

C.3 Honest-Verifier Zero-Knowledge.

For an honest verifier, the transcripts (in name of any user) can be simulated in an indistinguishable
way, without knowing any certification, and namely the one of the target user, under the XDH as-
sumption: One needs to simulate a transcript (T1, T2, T3, T4), (R1, R2, R3, R4), c and (sα, sβ , sx, sz),
without knowing any valid certificate. We first need to simulate the quadruple (T1, T2, T3, T4), which
can be done by randomly choosing A, α and β in the appropriate groups, and compute

T1 = αK T2 = A+ αH T3 = βK T4 = A+ βG.

Under the XDH assumption, this quadruple is indistinguishable from the output on any prover.
The following will not assume any knowledge about the data used to generate this quadruple
(T1, T2, T3, T4). And the simulation will be perfect, as for any Schnorr-like proof: one first randomly
chooses the challenge c ∈ {0, 1}k and then sα, sβ , sx, sz in Zp. one simply computes (R1, R2, R3, R4)
using the verification equations.


